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ABSTRACT

SOURCES OF VARIABILITY IN A PROTEOMIC EXPERIMENT

Scott D. Crawford
Department of Statistics

Master of Science

The study of proteomics holds the hope for detecting serious diseases earlier
than is currently possible by analyzing blood samples in a mass spectrometer.
Unfortunately, the statistics involved in comparing a control group to a diseased
group are not trivial, and these difficulties have led others to incorrect decisions
in the past. This paper considers a nested design that was used to quantify
and identify the sources of variation in the mass spectrometer at BYU, so that
correct conclusions can be drawn from blood samples analyzed in proteomics.
Algorithms were developed which detect, align, correct, and cluster the peaks in
this experiment. The variation in the m/z values as well as the variation in the
intensities was studied, and the nested nature of the design allowed us to estimate
the sources of that variation. The variation due to the machine components,
including the mass spectrometer itself, was much greater than the variation in the

preprocessing steps. This conclusion inspires future studies to investigate which

part of the machine steps is causing the most variation.
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Chapter 1

Introduction

Proteomics is the field of science dedicated to studying protein structure
and function. Knowledge of proteins unlocks mysteries about the structures of life
on earth. The results from a proteomic experiment have a significant amount of
variation, and drawing conclusions from the data may be difficult. This project
attempts to define and quantify sources of variation that are encountered in pro-
teomic studies.

One avenue of research that biochemists have been investigating is the
possibility of using indicator proteins to detect diseases or other conditions. To
find these proteins, samples from a control group are compared to a group that
has a specific disease or condition. Using chromatographic mass spectroscopy,
biochemists test whether subjects in the disease group have discriminating proteins
that can be used as a test. Inferences about differences between the two groups is
complicated by the variation that is inherent in all proteomic studies.

This project uses chromatographic mass spectrometry to analyze protein in

blood serum samples. The preparation, handling, and storage of the blood serum
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add variation to the data, does variation in the instrumentation. Additional error
is introduced by numerical analysis of the data. The data contains many local
maxima which can be artifacts of random variation. Algorithms to detect peaks,
correct for random noise, and align peaks across different samples were developed
for this data set.

Identifying and quantifying each source of variation was done by perform-
ing a nested design on one homogeneous blood sample. To assess this, one blood
sample was taken and separated into multiple vials. Each vial was prepared sep-
arately and split into two other vials. Half of the vials were analyzed with the
chromatographic mass spectroscopy on one day in two separate groups. The other
half were analyzed on a second day in two other groups. Several variance compo-
nents were estimated using data from the multiple runs.

The variance components allow two important concerns to be dealt with.
First, if the variation overwhelms the signal in the instrumentation then past
results in this field of research may be suspect. Second, to attempt to reduce
the error in this type of analysis in the future, it is helpful to identify the largest

sources of variation.

ol Lalu Zyl_ﬂbl

www.manharaa.com




Chapter 2

Literature Review

2.1 The Science of Proteomics

Proteomics is a mixture of molecular biology, biochemistry, and genetics
used in analyzing the structure, function, and interactions of proteins in cells, tis-
sues, or organisms (Anderson and Anderson 2002). The biology is based on DNA,
which codes for the production of messenger RNA (mRNA) through a process
called transcription. This mRNA codes for protein synthesis by ribosomes during
a process called translation (Kolata 1974). Proteins are responsible for most of the
active functions in the body, including the reactions of metabolism by enzymes,
the effects of hormones in response to signals such as pregnancy, or the capture
of diseases with antibodies. Hence, every field of science that relates directly to
living organisms may benefit from the findings of proteomics.

The study of proteomics attempts to characterize many aspects of protein;
identifying which proteins are present in an organism, quantifying protein abun-

dance, characterizing protein structure, separating complex proteins into simpler

pieces, modifying the function of a protein, or analyzing the action of a protein

ol Lalu Zyl_ﬂbl

www.manharaa.com




on the atomic, molecular, and cellular levels.

2.2 Mass Spectrometry

A mass spectrometer measures the mass to charge ratio (m/z) of ions.
Many types of gases, liquids, and solids are analyzed with a mass spectrometer,
including bodily tissues or fluids. When a sample is introduced into a mass spec-
trometer, it is broken down into separate ions that are subjected to an electric
or magnetic field. After the ions enter this field, they are deflected depending on
their mass and their charge; the detector measures how far each ion is deflected.

Based on this distance, m/z is calculated (Nelson and Cox 2000).

2.2.1 Ionizers

The first component of a mass spectrometer is an ionizer, which separates
the individual ions to be detected. A common type of ionizer, the electron ionizer,
uses an electric current to separate gas molecules into different ions, and is used
on large molecules such as proteins. A chemical ionizer uses reagent ions for a
more stable separation of the sample ions. The chemical ionizer, however, is only
used for small molecules, not for proteins.

For liquid samples, three different types of mass spectrometers are com-
monly used. SELDI or Surface Enhanced Laser Desorption/lonization is used for

simple compounds. This technology treats a special metal plate with a chemical

that adheres to the molecular species of interest. By flushing the excess sample
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away, only preselected species are left. When a laser hits the chemical on the
metal plate, it releases the proteins to fly into the mass spectrometer. MALDI
or Matrixz Assisted Laser Desorption/Ionization uses a special matrix of chemi-
cals to trap the entire sample. When the matrix is hit with a laser it vaporizes,
leaving the entire sample free to enter the mass spectrometer. The SELDI mass
spectrometer is preferable for a scientist who desires to study a certain subset of
a sample. MALDI performs better for complex studies where an entire sample is
desired.

The third type of ionizer that is used for liquid or solid samples is the
Electrospray lonizer or ESI. The ESI traps the sample into tiny water droplets
which are electrically separated and quickly evaporated. As the water droplets
evaporate, the sample inside is compressed. Each droplet subsequently bursts,
propelling the compressed sample into the mass spectrometer, in the same way
that two magnets of equal polarization repel each other. The resulting sample that
enters the mass spectrometer is more complete because it has not lost substance
as it would in SELDI, nor has it been subjected to a laser as in SELDI or MALDI

(Suizdak 1994).

2.2.2 Analyzers

Once the sample has been ionized it enters the analyzer. A Time-of-Flight
(TOF) analyzer uses a magnetic field to accelerate the ions toward the detector.

The mass and charge of the ion affect the speed of the ion toward the detec-
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tor. This type of analyzer is often used with MALDI or SELDI. The entire mass
spectrometer is referred to as MALDI-TOF or SELDI-TOF. TOF analyzers often
have an option of using a quadrapole, which is a mass filter that separates the ions
based on their m/z value. These analyzers, called QTOF, disable the quadrapole
option when it is desired to allow the entire sample into the mass spectrometer
(Gross 2004).

A sector analyzer uses an electric field to warp the flight of ions; the length
of the path for the ion is a result of the mass to charge ratio (Bertsch 1999). Other
types of analyzers exist, including the quadruple mass analyzer that stabilizes and
destabilizes ions and the orbitrap analyzer that causes the ions to spin around
an electrode. All analyzers use an electric or magnetic field to uniquely alter the

journey of various ions to the detector (Nelson and Cox 2000).

2.2.3 Detectors

Detectors sense a charge or current as a result of being in the presence
of an ion. When an ion hits a detector plate, the electrons jump from the plate
onto the ion. This movement of electrons is registered as an electrical flow. If
the ion passes through a Fourier Transform Ion Cyclotron Resonance (FTICR) it
flies between two metal plates. As the ion passes between the plates, it creates an
electrical circuit which causes an electrical flow. Although there are several types
of detectors, each reacts to the ion by creating a small current or charge. When

the ion is detected, the m/z value is calculated (Cole 1997).
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2.3 Chromatography

Chromatography is a collection of methods used to physically separate and
analyze complex mixtures. A sample flows through a small tube or capillary called
a column. As the sample encounters physical or chemical obstacles in the column,
certain compounds of the mixture travel more slowly than the other compounds in
the mixture. The mixture breaks down into its constituent parts when components
of the mixture exit the column. The type of column or obstacles used to separate
the mixture depend on what is being analyzed and how the sample needs to be

separated.

2.3.1 Gas Chromatography

Gas chromatography uses a high pressure gas to push the liquid sample
through the column. To separate the components, the column is either coated
with a special chemical or packed with an adsorbent material. Capillary gas chro-
matography uses a solvent that is coated on the column walls. These columns need
to be very small and very long to allow the mixture an opportunity to combine
with the solvent, and are often wrapped into a small coil. As the gas pushes the
mixture through the coil, certain components stick to the coating. This sepa-
rates the mixture according to the time of component separation from the solvent
(Menster et al. 1995).

In gas absorption chromatography, an absorbent material such as diatoma-

ceous earth is packed into the column. The absorbent material absorbs different
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elements of the mixture. The resulting liquid evaporates as the gas is forced
through the column. As the packing material evaporates the mixture separates

based on the volatility of each component.

2.3.2 Liquid Chromatography

In liquid chromatography the liquid sample is pushed through the column
using a high pressure liquid. Reverse phase chromatography uses a solid, such as
silica or resin beads, to separate compounds by polarity and determine whether
the compound is hydrophobic. High Performance Liquid Chromatography (HPLC)
pushes the liquid at a higher velocity. This extra force requires solids that can
withstand the pressure, and also means the column can be shorter and uncoiled.
Size exclusion chromatography uses a porous gel to filter the molecules in the
mixture. This method is quick and is used to separate molecules by size (Brown

and Hartwick 1989).

2.3.3 Ion Exchange Chromatography

Ion Exchange Chromatography uses a resin coating on the walls of the
column or on beads inside the column which will magnetically adhere to the ions.
Cation exchange chromatography uses a negative charge, whereas anion exchange
chromatography uses a positive charge. The molecules leave the column depending

on the strength of their charge (Harris 1998).
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2.3.4 Affinity Chromatography

Affinity chromatography uses a specialized column that has been treated
with a matrix of chemicals or specially treated beads. As the sample enters the
affinity column, separate parts of the sample stick to the chemical or beads de-
pending on its structure. A common choice for the chemical is one that reacts
to water in the compounds. This chemical causes the compounds that are hy-
drophobic to fall further into the column instead of sticking at the top. Another
chemical is used to flush the sample through the column so that the sample will

elute—separate chemically—through the column (Wulfsberg 2000).

2.4 Chromatographic Mass Spectrometry

An improved analysis of a sample is obtained by combining affinity chro-
matography with mass spectrometry. The first step is to use an affinity column
to separate the sample and, as it elutes, feed it into a mass spectrometer. This
means that only a subset of the sample is being analyzed in the mass spectrometer
at any given time, but the entire sample is eventually analyzed (Kienle 1992).

The use of the affinity column is due to the fact that ions with similar m/z
ratios are likely to elute at different times, allowing them to be analyzed separately.
It is difficult to separate ions with similar m/z ratios if only a mass spectrometer
is used. The combination of an affinity column with a mass spectrometer clarifies
which molecular species are detected in the sample. The output from this combi-

nation is a three-dimensional model with m/z along one axis, elution time from
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Figure 2.1: A sample of 3-D output from the chromatographic mass spectrometry
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the affinity column along another axis, and the intensity of the detection along the

third axis. Figure 2.1 shows how this output might appear in three dimensions.

2.5 The Proteomic Search for Biomarkers

One goal of proteomics is the search for biomarkers. Biomarkers are specific
proteins that are present in a subject due to a disease or condition. If a biomarker
is discovered for a certain disease, then a test for that disease may be developed
(Master 2005). Proteomics has been used to search for biomarkers to test for ovar-
ian cancer (Petricoin et al. 2002a), prostate cancer (Petricoin et al. 2002b), and
breast cancer (Vlahou et al. 2001). Currently, a team of researchers at Brigham
Young University and the University of Utah Medical School are researching the
possibility of finding biomarkers to test for preeclampsia, a potentially fatal con-
dition that can occur during pregnancy.

The search for preeclampsia biomarkers is done by analyzing blood serum
samples from patients who are known to have preeclampsia and comparing them
with control patients who are pregnant, but are not diagnosed with preeclampsia.
The blood serum samples are analyzed using a high performance liquid chromatog-
raphy column with hydrophobic beads and an electrospray ionizer-quadrapole time
of flight mass spectrometer (ESI-TOF)(Figure 2.2). In many proteomic searches,

the quadrapole option on the mass spectrometer is disabled.

11
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Figure 2.2: The Qstar Pulsar i ESI-LC TOF Mass Spectrometer used at BYU

12
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2.6 Statistical Concerns

Analyzing the data from an ESI-TOF is complicated by several statistical
concerns. Forming correct conclusions is difficult due to complications in acquiring

the data, correctly identifying peaks, and transforming the data.

2.6.1 Data Problems

The computer program that controls the mass spectrometer is a proprietary
product of the company that makes the device, so there are severe restrictions on
the types of output that are obtained from this instrument. A three-dimensional
plot of the data can be viewed, or cuts can be made to create slices of the data
along the time or m/z axes, but the raw data used to create the three-dimensional
plot is not available. If a slice of the data is used, then the data will be aggregated
(i.e., cuts in the time dimension will integrate across a time segment at each m/z).

If a cut crosses through the middle of a peak, then the total signal on each
side of the cut is diminished. It will appear that there are two small peaks in each
slice on either side of the cut, when one large peak should be stretching across
both slices. When two peaks are aligned perpendicular to the cut, only one large
peak is detected. Ideally the cuts will go between peaks, so that each peak appears
appropriately in each slice, but when that is not the case error will be introduced
into the data.

In an effort to reduce this error, the biochemistry department at Brigham

Young University has decided to slice along the time axis, with each slice contain-

13
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ing the integrated intensities during two-minute windows. Most peaks are resolved
within two minutes of elution from the affinity column, a two-minute slice ensures
that the peaks have had time to be fully detected. The three-dimensional plots of
raw data were examined and it was concluded that two minute slicing tended to
separate peaks well.

Analyzing peaks across different samples in three-dimensional space is a
very complex problem, while in two-dimensions it is simpler. Instead of a three-
dimensional data set with 22 minutes along the time axis, the data is consolidated

into 11 two-minute windows.

2.6.2 Peak Alignment

When a compound is examined, the (time, m/z) coordinate of the peak is
subject to variation. The variability in the time dimension is influenced by the
elution time through the chromatography column, flight time of the ion in the
mass spectrometer, or other uncontrollable sources of noise. To deal with this
variation the three-dimensional output is examined and the slicing is aligned in
the time dimension according to characteristic peaks. This slicing attempts to
ensure that peaks in different runs are consistently aligned in the time dimension.

A current mathematical problem involves finding improved methods for
aligning peaks in the m/z dimension (Gentleman et al. 2005). The same issues
arise when comparing character strings or matching gene sequences. The greatest

strides in this direction have come from voice recognition research. The methods

14
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developed to match voice patterns specialize in aligning characteristics of non-
linear functions or time series data.

Dynamic Time Warping (DTW) is a discrete programming algorithm that
uses a FEuclidean distance to adjust two samples into alignment. In DTW, one of
the samples is used as a template and the independent axis of the other sample
is “warped” to align it with the template. This warping shrinks or expands dif-
ferent areas of the independent axis, which lines up the maximum and minimum
points of each function (Wang and Gasser 1997). Correlative Optimized Warping
(COW) works similarly to DTW, but uses a penalized likelihood to maximize the
correlation between the functions (Glasbey and Mardia 2001).

Other approaches include a Hidden Markov Model (HMM) which uses a
stochastic process of states to model the most probable set of peaks across samples
(Juang and Rabiner 1991). Cluster analysis is another method for determining
which peaks are similar, and then grouping them together (Zhang et al. 2003).
These methods are simpler to implement than DTW or COW, but can be slower

when used with large and complex data sets.

2.6.3 Sources of Variability

Once the corresponding peaks have been aligned in each sample, the peak
intensities across all samples are used to search for biomarkers. Biomarkers are
found by comparing a treatment group with a control group and searching for

differences in intensities between the peaks in each group, or for peaks that are

15
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present in one group but missing in the other group.

This search is complicated by the many sources of variability inherent in
these studies. Natural variability exists between subjects in the same group. Vari-
ation within a single subject can also be considerable, possibly due to the chemicals
in their body from day-to-day living conditions, stress level, sleep, or diet. Vari-
ability is also influenced by factors such as different people preparing the solution,
the lab environment, difference in the vials of blood, whether the blood is frozen,
and the duration of the freezing. The instrumentation introduces variability de-
pending on outside conditions, electrical currents, calibration of the machine, or
other fluctuations inside the machine. The motion of the ions inside the affinity
column and their flight through the mass spectrometer have variation. The de-
tector may also introduce error depending on how precisely it can measure the
presence of an ion.

The final output from the chemical analysis has variation from many sources.
The variation among different subjects, or even within the same subject, is not
easily controlled. It is important to quantify these types of variation, because any
tests for a disease must account for this variation. Other sources of variation such
as randomness in the flight of the ion or error in the detection can be decreased
by improving the instrumentation or methodology. Understanding these sources
of variability highlights which areas may benefit the most from continued research
(Hartemink et al. 2001).

Certain sources of variation are difficult to examine individually. For ex-

16
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ample, once a sample has been injected into the mass spectrometer, it will pass
through the ionizer, analyzer, and detector automatically. There is no way to skip
a step or to resend an ion through a stage a second time. The sources of vari-
ability that are associated with the ESI-TOF machine must therefore be grouped
together as the machine variation.

The machine variation causes small jitters in the output from the ESI-
TOF. The concern is whether these tiny jitters represent true peaks or merely
fluctuations in the ESI-TOF itself. All mass spectrometers have a range of values
where the signal is so small that the machine variation completely masks the
peaks that should be detected. The location of this range depends on the mass
spectrometer being used and the type of sample being analyzed. Figure 2.3 shows
how this signal to noise ratio is a problem in the 1700 m/z range of the ESI-
TOF for a specific sample. If the noisiest range of the data is used to search for
biomarkers, there is a high probability that anything found in this range is an

artifact of noise instead of signal.

2.6.4 Discrimination

In most cases, the data from a proteomic analysis is used to find differences
between a control group and a disease group. Some of the most common types
of analyses include cluster analysis (Bensamil et al. 2005), discriminant analysis
(Purohit and Rocke 2003), random forests (Izmirlian 2004), and simple multiple

testing (Gentleman et al. 2005). Each type of analysis has its own way of defining
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Figure 2.3: An example of a region of the mass spectrometer with a lot of noise
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and discovering differences between the groups. Different methods have unique
benefits and difficulties; however, in each case the statistics must be done properly
to avoid mistaken conclusions (Constans 2005).

A recent article by Petricoin et al. (2002a) emphasizes the difficulty of
statistical analysis in proteomics. Petricoin et al. claimed to be able to find
biomarkers to detect ovarian cancer with 100% sensitivity and 95% specificity
for the samples. Unfortunately, more careful statistical analysis did not support
the claims (Sorace and Zhan 2003).

Most of the differences Petricoin et al. used to discriminate the control
group from the cancer group were in the noisy m/z range for their mass spec-
trometer. This suggests the possibility that the differences Petricoin et al. found
were random noise (Baggerly et al. 2004b). The design of these experiments is
problematic. The samples from healthy subjects were run on one day, while the
samples from cancerous subjects were run on the subsequent day. This led to
concerns that the results could be due to different influences each day, such as the
weather, calibration problems, or electrical impulses (Conrads et al. 2004).

Other concerns such as the population to which the conclusions can be ex-
tended have also arisen (Check 2004). These problems make further developments
in the field of proteomics subject to intense statistical scrutiny. More work has
been done to search for cancerous biomarkers (Conrads et al. 2004; Petricoin et al.
2002b), but each faced similar problems (Baggerly et al. 2004a; Diamandis 2004).

These statistical concerns do not necessarily imply that the results are incorrect
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(Liotta et al. 2004), but subsequent studies on these results have not been able

to verify the claims of sensitivity and specificity for diagnosing cancer (Sullivan

2005).

2.6.5 Multiple Testing

One of the largest statistical concerns faced in proteomics is the large num-
ber of peaks that need to be examined. A range of ten m/z values can easily
contain nine or ten peaks. Each time window has a range of approximately 2,000
m/z, and there are eleven different time windows to examine. Even if there are
areas with few peaks, there could easily be over 15,000 peaks that would need to
be compared between groups to find a biomarker. This means the probability of
incorrectly finding a difference where there is no difference will be inflated (Bag-
gerly et al. 2004b). This issue can be partially alleviated by dividing the data
into two sets: one used to search for biomarkers and the other used to test those
biomarkers. The massive number of peaks to be investigated is still problematic
with this method.

Several ideas exist on how to deal with the possibility of finding a differ-
ence when there is none. Traditional methods such as a Bonferroni or Scheffe
correction require a significance level that is usually considered too high (Nichols
and Hayasaka 2003). More recently, an approach called False Discovery Rate
(FDR) has been developed to control the expected proportion of false positives

(Benjamini and Hochberg 1995). An extension of this method uses g-values. The

20

www.manaraa.com



g-value accepts that there are false positives, but also calculates the probability
that a certain discovery is not a false positive but a real difference; the g-value’s
usage is analogous to the p-value (Storey and Tibshirani 2003). Multiple testing
may be a concern when searching for biomarker, but this project is not testing

between treatment groups, and does not require multiple testing.

2.7 Experimental Design

A designed experiment can quantify many of the variance components
needed to analyze proteomic output. Although this type of experiment is not
a common procedure for chemists, we used one such design in this project to iden-
tify and estimate the sources of variation. This study is an important first step

that should come before attempting further statistical analysis in proteomics.

21

www.manharaa.com




Chapter 3

Methodology

3.1 Proteomic Data

3.1.1 Sample Preparation

When analyzing blood samples, certain steps must precede the use of an
HPLC-MS. The blood sample must first have the red blood cells and clotting
agents removed. To do this, the blood is left at room temperature for 30 minutes
and then centrifuged for 10 minutes. The blood separates, creating a heavy pellet
of red blood cells and clotting agents at the bottom of the tube. Plasma is collected
off the top of the sample.

The next step is to remove large proteins such as serum albumin and im-
munoglobulins. These proteins are so large and abundant in blood samples that
they mask the detection of the other proteins in the blood. One method for do-
ing this, called precipitation, involves the use of an organic solvent, acetonitrile,
which causes large proteins to unfold and fall out of solution. Due to the fact
that these proteins are not dissolved in the solution, they can be removed easily

through a centrifuge and the smaller, less-abundant proteins can be seen by the
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mass spectrometer more readily (Merrell et al. 2004).

3.1.2 Chemical Analysis

The analytical steps begin with an autosampler. The autosampler has a
bin that can hold five vials and an automatic arm with a needle at the end. The
arm is designed to center the needle over a particular vial. The needle lowers into
the vial to extract five microliters of the liquid sample. The sample feeds through
tubes directly into the chromatography column.

Our data came from a machine that uses HPLC with hydrophobic beads
that separate the proteins according to charge. The affinity column is connected
to the mass spectrometer, where ions are detected and the resulting electrical flow
is registered by the computer. The data is then sliced into eleven two-minute
windows, where each window contains an average intensity for those two minutes
at each m/z value. Each window is aligned so that the elution times begin at the

start of the windows.

3.1.3 Preparing the Data

Figure 3.1 shows the intensity versus m/z for the fifth time window (time
10-12 minutes). Figure 3.2 shows several samples of data in the m/z range of
605.5 to 607, which has a range sufficiently small to see individual peaks. Nine

separate runs are shown, each in a different color, to illustrate how the output can

vary from sample to sample in the same group. Notice the differences in the peak
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center and intensity for the different runs.

Intensity
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L
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Figure 3.1: The raw data across the entire m/z axis for a single sample

There are transformations to the data set that improve the estimates of
the peaks by reducing the variation due to machine fluctuations and alignment
problems (Gentleman et al. 2005). These transformations include normalization,
log transformation, baseline correction, adaptive threshold, and peak alignment.

The intensities have a distribution that is right skewed, as seen in Fig-
ure 3.3. This skewness tends to overemphasize the difference in intensities be-
tween a low intensity and a high intensity. Let y be the intensity data, then a
transformation of log(1 4 y) cause these intensities to become more centrally and

symmetrically distributed. Figure 3.4 shows the intensity profile from Figure 3.1

after the log(1 + y) transformation is used. Note that log(1 + y) is used instead
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Figure 3.2: The raw data in a small m/z range for eight samples analyzed at the
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Figure 3.3: Histogram of a sample of intensities across the fifth time window
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Figure 3.4: The log of one plus the raw output (Time Slice 5)
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of log(y) to keep the intensities positive with the bottom baseline at zero, which
makes the peaks easier for the chemists to both visualize and interpret. Many
statistical methods are based on the assumption that the data are normally dis-
tributed. The transformation results in a more normal distribution of intensities.
This implies that using well-known statistical methods is more valid.

If the autosampler injects a larger amount of the sample into the mass
spectrometer, the intensities are higher across the entire spectrum. This should
not be interpreted as more protein in that particular sample. The samples need
to be normalized to a common total intensity. When normalizing the area, it is
common to normalize the total signal to one. This implies that for every sample,
the total area under the graph of the intensity versus the m/z value is one (Bolstad
et al. 2002). Figure 3.5 below shows pre-normalized and normalized data for nine
samples. Note how this makes the peak located slightly before m/z = 606.5 more
uniform, which tends to lower the variance of the intensities.

After

I,

1

Il

Intensity
Intensity

0.000 0.001 0.002 0.003 0.004 0.005

Figure 3.5: Before and after normalization
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In many places the baseline of the intensities at a certain range of m/z
values appears to rise, and it appears that the mass spectrometer is detecting
more signal than it really is, as in Figure 3.6. This can happen when the mass
spectrometer detects several peaks very quickly, often as a result of various ionic
states of a particular protein’s atoms. When the intensity of this baseline is
estimated it should be subtracted from the raw data. The new baseline is zero
for all the samples at every value of m/z. This baseline correction improves peak

detection and increases the accuracy of the peak heights (Sauve and Speed 2004).

Intensity

600 620 640 660 680 700

m/z

Figure 3.6: An example of baseline drift

At times, even if there are no proteins to be detected, the mass spectrometer
still registers signal due to either fluctuations in the machine or random molecules
hitting the detector. If there is true signal that happens to be very small in
intensity, then it may not be distinguishable from the random noise inherent in

mass spectrometer output. One solution to this problem is to set a cut-off value.
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This means that any signal below a given threshold is considered unusable because
it is in the noise region. This solution is easy to implement, although the choice of
the cut-off value is somewhat problematic. The trouble with this method is that
it assumes the signal to noise ratio is constant over the m/z values, which is not
supported by investigation of the data.

A better solution than the cut-off value is an adaptive threshold. This
approach relaxes the assumption that the signal to noise ratio is constant by
using an adaptive statistic, such as a moving average over m/z. In this method,
moving windows of the data are selected, and thresholds within each window are
estimated. Intensities that are above the threshold are considered to consist of
signal and noise. Thus, an estimate of the noise is subtracted from the intensity.
Cases where the signal is not above the threshold are considered to be all noise
and are set to zero (Gentleman et al. 2005). Figure 3.7 shows how the normalized
data changes after applying a cut-off value.

The final goal of the data preparation is to identify the peaks that are rep-
resentative of the molecular species in the original sample. It is difficult to define
what constitutes a peak. Two main problems complicate the issue: overlapping
peaks and jitter in the intensity level. Figure 3.8 shows how difficult it is to decide
if a maximum is a peak or not. The figure shows three vertical lines in the general
area where peaks may be.

In order for a maximum to be identified as a peak, three separate require-

ments must be fulfilled:
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Figure 3.7: Before and after a cut-off algorithm was applied to the normalized

data
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Figure 3.8: An example of noisy peak detection.
mate locations of peaks.

Vertical lines represent approxi-
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(1) The peak must be tall enough to be above the noise region.

(2) The peak must be distinct from other tall peaks. In order for the peak
to be a satisfactory distance from tall peaks, the intensity must drop to a

certain level before climbing again.

(3) The peak must be wide. The machine may register a spike, or blip, that is
a result of some anomaly within the machine itself. These spikes are too
sharp to be biological and should not be considered true peaks. Figure 3.9
shows a simulated example of such a spike, occurring at the m/z value of

601.5.

Intensity

601.0 601.2 601.4 601.6 601.8 602.0

m/z

Figure 3.9: An example of a machine error spike

Although there are many algorithms, such as DTW or HMM, that can be
used to identify peaks, these algorithms are computationally intense when dealing
with complex data sets in proteomics. The data is larger and noisier than the data

sets DTW or HMM were designed to handle, so we have developed an alternative
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ad-hoc algorithm that requires less time and computer power (Table 3.1). The
algorithm is for data that have been log transformed and normalized. The algo-
rithm requires three parameters to be input by the user, a small window width,
a large window width, and a tolerance level. The peaks that have been identified
each have unique (time, m/z) coordinates and intensity.

The peaks must be combined into clusters that can be identified across
samples. This is not trivial, since peaks will have different m/z values in each
sample, and it can be difficult to distinguish the cluster to which a detected peak
belongs. Figure 3.10 demonstrates the difficulty in grouping peaks with 20 sam-
ples. Some groups of peaks are easily distinguished and clearly separated from the
other groups. Some peaks do not appear on all 20 of the samples, and therefore

should not define a group.

Intensity
!

0.0004 0.0006 0.0008 0.0010 0.0012
| |
® o

1200 1201 1202 1203 1204 1205

m/z

Figure 3.10: Intensity and m/z values of identified peaks in 20 blood samples.
Dots of the same color are from the same sample.
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Table 3.1: Algorithm for peak detection

Input small window width

Input large window width

Input tolerance level

For each value of m/z perform the following:
Calculate a large window as m/z+large window width
Calculate average intensity level within the large window
Estimate the standard deviation within the large window
Calculate the threshold as the average plus

the tolerance level times the standard deviation

Calculate a small window as m/z+small window width
Calculate the maximum within the small window

If the maximum is above threshold, label m/z as signal + noise

If the m/z is the maximum within the small window, then label
this point as a peak.

If the maximum is not above threshold, label m/z as pure noise

For all m/z that are labeled as pure noise:
Estimate the noise level as average intensity in the large window

For all m/z that are labeled as signal + noise:
Estimate the noise level using a straight line between
the noise regions on either side of the signal + noise region.
Subtract the estimate of the noise level from the intensity

Any signal below zero, set the signal to zero
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The peaks could be grouped together using traditional cluster analysis
(Bensamil et al. 2005), but there are two assumptions that make the implemen-
tation of this difficult. Cluster analysis requires an initial estimate of the number
of clusters and a good beginning estimate of the cluster locations themselves. In
proteomics, the number of peaks in a sample is unknown, and estimating the
locations of the peaks is difficult.

Fortunately, when two assumptions are made an adapted clustering algo-
rithm overcomes these problems. The first assumption is that peaks will have
distinct m/z values. Two molecular species in the blood could have identical m/z
values and elute from the affinity column at the same time, but in such a case we
assume that the two species combine into one peak with a unique m/z value. The
second assumption is that an estimate of the variance in peak center is obtained
by examining a representative sample of peaks that are grouped together by hand.
These two assumptions allow an algorithm to be developed that groups the peaks
into clusters (Table 3.2). The clustering algorithm requires one parameter, the
zeritical distance.

This algorithm solves difficulties of peak detection as well. The random
variation creates spikes that are not true peaks. The clustering algorithm is not
able to find peaks in the same area in the other samples, so spikes are rejected
as noise. At times, when a tall peak fluctuates creating two equal maximums
at nearly the same m/z. The clustering algorithm chooses the maximum that

is closest to the other peaks, and ignores the other maximum. This solves the
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Table 3.2: Algorithm for clustering peaks across samples

Input zcritical value

Initialize the cluster with first peak in first sample
Set cluster center at the m/z value of the first peak

Iterate sequentially through the other 19 samples:

Estimate the standard error of m/z at cluster center

In the sample find the peaks where the m/z is within
zeritical*standard error of the cluster center

Include the peak that is closest to the cluster center
as part of the cluster

In case no peaks are within zcritical*standard error of
the cluster center skip that particular sample

Estimate the new cluster center as the average m/z value
of all the peaks included in the cluster

Repeat iteration for all 20 samples until there is no change in
the peaks included in the cluster
or until the cluster repeats a previous clustering set

Label which cluster the peaks belong to, and mark them so they
will not be used as part of another cluster later.

Repeat algorithm for the next peak in the first sample
Continue the algorithm for all peaks in the first sample
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problem of assuming that there are two peaks, when in reality there is only one.

3.2 A Proposed Experiment

In an effort to understand and quantify the sources of variability, a crossed-
nested experimental design was proposed. A nested design uses a hierarchical
structure to allow the different components of the variance to be estimable.

In the proposed design (Figure 3.11) a quantity of blood is drawn from
one subject at one time. The blood is stripped of the red blood cells and clotting
agents, leaving the blood serum. The serum is then divided into five separate
vials. Each vial goes through the preprocessing steps separately, including the
use of acitonitrile to precipitate out albumin. Each vials is then split into two,
resulting in a total of ten vials.

One of the vials from each pair of the five original vials is then placed in the
freezer for the following day, while the other is analyzed the first day. The vials
are randomly placed in the autosampler, and after each vial is run through the
autosampler, it is rerun a second time in a new randomized order. The following
day the five vials in the freezer are thawed and are placed into the autosampler.
Each vial is run in random order twice, following the procedure of day one.

Differences among runs allows the variance due to the HPLC-MS to be
estimated. Variation within runs after accounting for vials effects gives an estimate
of the variance due to the autosampler. Comparing the vials that were frozen to

the vials that were never frozen allows an estimate of variation due to freezing and
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Figure 3.11: The basic outline of the design
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other day effects. Comparing the original five vials, an estimate of the variation
due to the preprocessing steps is obtained.

An appropriate statistical model is

Ykim = b+ fr + 90+ (f9)ri + Pn(r) + Etmr) (3.1)

where Yy, is the intensity level, p is the mean, fi is the random effect of the kth
day, k = 1,2, g; is the random effect of the lth vial, [ = 1,...,5, (fg)w is the
random effect of the day by vial interaction, Ay, ) is the random effect of the mth
trial run nested within the kth day, m = 1, 2, €4, is the random effect of the vial
by trial interaction as well as other measurement errors. The effects fx, g1, (f9)x,
Pon(ry, and €gy are all assumed to be normal random variables with mean zero

and variances 07, 07, 07,, 0j, and o2, respectively.
3.3 The Actual Experiment

The actual experiment was somewhat different from the proposed experi-
ment(Figure 3.12). A quantity of blood was drawn from one subject, and ten vials
of the blood serum were taken from that quantity. Each vial went through the
preprocessing step of precipitation. Five vials were then placed in the freezer to
be run later. Five vials were placed in the autosampler immediately.

The vials were named A B C D and E. In the first run, the autosampler
was randomly set to run vials in the order A-D-C-©-B-E where @ represents a

blank run, meaning a sample without any molecular species. In the second run, a

different order was used, E-0-C-A-B-0-D.
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Figure 3.12: The outline of the actual experiment performed
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A blank run is sometimes used to make sure the equipment is running
properly. A blank run washes out any leftover particles from a previous run. The
chance that the equipment is not working properly, or that a significant amount
of molecules has been retained in the column, is expected to be very small. Using
a blank run is time consuming because each run requires an hour of analysis.
For these reasons, a blank run is not commonly used and was not planned in
the original design. Using a blank run to clean the affinity column could be
advantageous, and for that reason there were three blank runs used in the actual
design.

The second day, the other five vials were taken from the freezer and thawed.
The autosampler was set to the same ordering as the first five vials and each vial
was analyzed twice in the same order as before (instead of re-randomizing). The
fact that this second set of vials was not re-randomized is unfortunate.

In the actual experiment, the day effect is confounded with the order due
to the lack of re-randomization. The effect of day is estimated with less precision,
since it is not crossed with vial. Despite such difficulties, the design still allows
estimation of most of the components of variation.

This design includes several nested factors and crossed factors. A nested
factor is a factor which is indexed by the factor above it. For example, in this
experiment the vials were labeled A, B, C, D, and E for day one, and A, B, C,
D, and E for day two. This means vial A in day one is not the same as vial A

in day two, in other words, the vial is nested within day. Two different ESI-TOF
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runs were done each day, so trials are nested within days as well. Each trial used
all five of the vials for that day, so trials are crossed with vials nested within days
(Kuehl 2000).

A reasonable statistical model for intensity in a specified peak is

Ykim = M+ BoZkim + fr + Gik) + Pom(k) + Ekim (3.2)

where Y, is the intensity level, p is a constant, (3, is the coefficient for the

indicator variable z,, where

1 if a blank run was used previously
Zklm =

0 otherwise,

fr is the random effect of the kth day, k = 1,2, gj) is the random effect of the /th
vial nested within the kth day, [ = 1,...,5, hy is the random effect of the mth
trial run nested within the kth day, m = 1, 2, g4, is the random effect of the vial
by trial interaction plus measurement errors. The effects fi, gix), Pm), and g
are all assumed to be independent normal random variables with mean zero and
variances 0%, 05, 0, and o2, respectively. The degrees of freedom for each factor

are given in Table 3.3.

3.3.1 Likelihood approach

Estimating the variance components means to find values that maximize

the likelihood. The model (3.2) assumes that the random effects are normally dis-

tributed with a mean of 0 and a variance of ¢2. The sum of normally distributed
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Table 3.3: Degrees of freedom for each factor

Name Source df

Constant p 1
Preceding Blank (3, 1
Day f 1

Vial ¢ 8

Trial A 2

Error (gh) 7

Total  Ykimn 20

variables is normally distributed, so y, is also normally distributed. The likeli-

hood is the product of the density functions for each 1. The likelihood is

]_ 1 ’ / -1
L£(8,0y) = _ _e 2 (Y- XB)(ZGZ'H+R) " (y-Xp) 3.3
0.81%) = oytizcz T R (33)

Another representation of the model is in matrix form
y=XB+Zu+te (3.4)

where y is the vector of intensities, X is the known matrix of predictor variables,
and 3 is a vector of unknown coefficients. The random effects are represented by
Zu where Z is the matrix relating the respective random effects to each response
y, and wu is the vector of each random effect with variance G. The vector e is the
random error with variance R. The elements of G are the variance components.

The variance of y is ZGZ' + R. The solution for the model is found by
minimizing (y — X3)(ZGZ'+ R) ' (y— X 3). A restricted likelihood is adjusted
to yield more unbiased solutions. The equation for the restricted likelihood is given
by

n—p

log(27), (3.5)

1 1 1
R’EML(G,R) = —5 log |V’ _ 5 10g |le—1X| - §Rlv—1R_
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and the Newton-Raphson method can be used to find fixed effects and variance
components that maximize the restricted likelihood. Programs such as SAS PROC

MIXED are able to solve iteratively for these components (Littel et al. 1996).
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Chapter 4

Results

4.1 Peak Detection

Many different combinations of parameters were used to optimize the peak
detection algorithm. The viability of the parameters was measured by examining
several segments of the data and comparing the peaks found by the algorithm to
those that biochemists at Brigham Young University believed should be found.
These biochemists chose the peaks that should be detected by examining plots of
each segment of data. The parameters chosen are in Table 4.1. The peak detection
algorithm was able to find an average of 5,209 peaks in each time window of each

sample, for a total of 1,145,996 peaks.

Table 4.1: Parameters used in the peak picking algorithm

Parameter Value
Small Window Width 0.12
Large Window Width 1.8
Tolerance Level 2
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4.2 Peak Alignment

4.2.1 Preliminary Work

The clustering algorithm finds peaks that are close to some initial estimate
of the cluster center. To calculate the distance between a peak and the cluster
center the difference between them is standardized in the m/z axis. That is, the
difference between the peak m/z value and the m/z value of the cluster center is
divided by an estimate of the standard deviation of the m/z value for that peak.
This requires some preliminary work to estimate the variance in the m/z value for
a peak.

To get an initial estimate of this standard deviation I manually selected
43 peaks after a visual inspection of the fifth time window. To find these peaks
I examined a graph of the entire window. I chose peaks throughout the m/z
spectrum, ranging from 500-2500. These peaks were clearly above the noise region,
and distinguishable in all 20 samples.

Using this data to analyze variance components may bias the results, since
the peaks chosen were those that were easily recognized. The easiest type of peak
to find were those with a high intensity and low variance. This means our estimates
of the variability may be biased, but it is a preliminary step to determining the

best parameters for the peak alignment.

45

ol Lalu Zyl_ﬂbl

www.manharaa.com




4.2.1.1 Estimating Variance of Peak Center

The theory of proteomics states that as the m/z values increase, the vari-
ation in the peak center increases exponentially (Gentleman et al. 2005). Given

that the variation increases exponentially, the regression model is:

log(y) = Bo + Sz + e, (4.1)

where y is the standard error of the m/z value for each group of peaks, x is the
average m/z value for the peaks, and e is the error distributed as N(0,0?). The
error term may not be normally distributed, and it appears that the variance is
not constant, but this assumption will allow a rough estimate to be used.

Figure 4.1 shows the estimates of the standard error of m/z as a function

of the m/z value. The fitted function has been plotted with a solid line using

log(y) = —5.26 + 0.00179z. (4.2)

This equation can be used to estimate the variance of peak centers and standardize
the distance between any given peak and a given cluster center. Both coefficients
are significant with a p-value of nearly zero. Figure 4.2 shows the histogram of
m/z values using in the regression.

This regression on the standard deviation of the m/z is an important con-
tribution as it allows for the formation of an adaptive window for peak alignment.
Previous studies have suggested that a constant window would be appropriate if a
log transformation on the m/z axis were performed (Gentleman et al. 2005). This

study shows that a log transformation is not sufficient.
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4.2.1.2 Variance of Peak Intensity

The data suggest that the standard errors of the intensity would have a

linear relationship to the intensity level (Figure 4.3) The fitted equation is
y =2.82 x 107° 4 0.299z, (4.3)

where y is the standard error of the intensity of the peaks in each group and =z is

the average intensity level for each group of peaks.

4.2.2 Clustering

The window size chosen for the clustering algorithm was based on the 99.9%
confidence interval. Because the confidence level is high, it should ensure that only
the most extreme outliers are not used in the clustering. With 99.9% confidence,
the window width is 3.09 times the calculated standard deviation from the mean
in the m/z axis. The algorithm (Table 3.2)identified an average of 1,605 clusters
in each time window and a total of 17,658 clusters across all eleven time windows.

Figure 4.4 shows a histogram of the number of samples in each cluster. A
cluster may have only a few samples if the peak picking algorithm detects a peak
that is actually noise. The peak will not be found in the other samples, and any
cluster that includes that peak will be incomplete. Of the 17,658 clusters there
were 7,665 clusters involving all twenty samples. These clusters were kept and the
others were discarded.

When analyzing samples across different subjects, it would not be sensible
to restrict the clustering algorithm to peaks that are present in every sample. If
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the goal is to find differences between subjects then peaks that are present in some
samples but lacking in others would actually be of greatest interest. The missing
peaks could occur due to differing conditions between subject groups, and testing
for that peak could also detect the condition. In a proteomic analysis where the
goal is to find biomarkers, it would be better to accept peaks that are found in
a certain high percentage of the samples in a treatment group, say 95% of the

samples in the cancer group and 95% of the samples in the control group.

4.3 Data Analysis

4.3.1 Variability in Peak Intensity

When comparing a control group to a treatment group, it is useful to know
the variability in the intensities that are not a result of the treatment. As was
discussed earlier, this variability appears to be a function of the intensity level
itself.

Estimating the relationship between the variability in intensity to the actual
intensity level is not the main aim of this project, but it is valuable for two reasons.
First it can be a simple way to examine the bias in the results from the hand
chosen peaks, and it demonstrates how to analyze the variability in intensity. In
the search for biomarkers the variability in intensity dictates how large a sample
size is needed to detect a difference.

Figure 4.5 shows a pair of sequential peaks after the log transformation

and normalization, the first with a high intensity and the second with a lower
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intensity. It can be seen that the peak with the highest intensity also tends to

have the most variation about that intensity level.

Intensity
0.06 0.08

0.04

0.02

0.00

545.2 545.4 545.6 545.8 546.0

Figure 4.5: Variance in intensity depends on magnitude of intensity

Figure 4.6 shows these standard errors of the intensity as a function of the

intensity itself, with the fitted equation given by

y = 9.82 x 107° +0.1352x (4.4)

where y is the standard error of the intensity of the peaks in each group, and z is
the average intensity level for each group of peaks. These estimates are improved
from the preliminary work due to the larger sample size and the superior peak
detection. The intercept has more than tripled, but when compared to the slope
it is still practically zero. The slope had a 50% increase, which suggests that the

peaks which were chosen by hand tend to be the peaks with less variability.
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Figure 4.6: The standard error of intensity as a function of intensity
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4.3.2 Variance Components

The variance components were estimated by maximizing (3.5) using SAS
Proc MIXED. Each cluster of peaks yielded a different set of variance components,
and by examining the entire set of estimates we can get a better understanding
of the true nature of the variance components. The SAS code used to calculate
these estimates is
proc mixed data=proteomics2 method=reml;
class blank day vial trial;

model intensity=blank/solution;
random day vial(day) trial(day);

by group;
run;

The “by” statement in the code will run the model on each set of m/z
values separately. Since there were 7,665 clusters at unique m/z values, there are
7,665 different estimates of the variance components. Figure 4.7 shows a matrix
plot of each of the four different variance components: day, vial, trial, and the
error term. Larger versions of each plot will also be given for closer inspection.

It is worth mentioning which of these four sources of variability are con-
tributing the most variation. The trial and vial components were by far the
smallest sources (Figure 4.8). This speaks well of the pre-processing steps used to
analyze these proteomic samples.

The day to day variation represented by the day variance component is
higher compared to the vial or trial components (Figure 4.9 and Figure 4.10).

This variability is from two different sources: storing the samples overnight, and
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the daily calibration of the ESI-TOF instrument. The day, vial, and trial sources
contribute a relatively small amount of variability compared to the fourth factor,
the random error.

The random error is a crossed effect of the trial by vial interaction with
other measurement error, as shown in (3.2). This can be thought of as the error
that occurs each time a sample is examined by the ESI-TOF. This is referred to as
the machine variability in Chapter 2, and it was hoped that this variability would
be negligible. Analyzing a sample in this machine should be automatic, without
change in the process. Finding that the machine variability is higher than the
vial variability (Figure 4.11) and higher than the trial variability (Figure 4.12) is
an alarming discovery. This indicates that to detect a small difference between
treatment groups an extremely large sample will be required.

The error term was usually higher than the variance of day, although the
variance of day was larger than the variance of trial or vial (Figure 4.13). The
day-to-day variability could be high due to the daily calibration of the machine.
If that is the case, then the total machine variation would be the combination of
the day-to-day variation and the error term. This encourages the idea that the

machine variability is the largest source of variation in this experiment.

4.3.3 Effect of a blank run

A blank run was used after every three vials were analyzed in the ESI-

TOF, but the question is whether they were needed. Some of the p-values for the
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Figure 4.11: Variance of vial vs. random error
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significance of a blank run were very low, but with 7,665 clusters that should be
expected. Even if the blank run is truly significant the effect is quite low compared
to the intercept. The presence of a preceding blank run was used as a covariate.
Figure 4.14 shows a histogram of the p-values for the blank run for the various
peaks.

Even when a factor is statistically significant it may not be practically
significant, which would be the case if the intercept was an order of magnitude
greater than the effect of a blank run. Figure 4.16 shows the effect of the blank
runs against the magnitude of the intercept to examine the practical significance.

Although the blank run does not appear to have a significant effect on
the intensity levels, it could still be important. Perhaps blank runs do affect the
variability, but the effect can only be noticed when blank runs are used after every
fourth vial. While this experiment was not designed to analyze the effectiveness

of a blank run, it appears that using a blank run more frequently would not have

improved the results.
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Figure 4.14: Histogram of the p-values for tests of the effect of a preceding blank
run
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Chapter 5

Conclusions

5.1 Machine Variability

The results of this experiment cause concern about the amount of variabil-
ity attributed to the ESI-TOF machine. The runs and the pre-processing steps
contribute a negligible amount of variability, but the day to day changes and the
individual runs through the ESI-TOF do increase the variability dramatically. The
day to day variability may be due to the freezing of the vials, but it is most likely
due to the daily calibration of the ESI-TOF. If this conclusion is correct it is ironic,
because the daily calibration is designed to reduce systematic variability, but in
this experiment it appears to increase the variability. When the daily variation is
combined with the error term the total amount of error due to the machine itself
is by far the largest source of variability.

This project cannot answer why the machine error is so large, nor can it
suggest the proper procedure to correct that variability. There should be further

experimentation to determine whether the machine is malfunctioning or if better

procedures to calibrate the machine are needed. Until the machine variation is

ol Lalu Zyl_ﬂbl
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understood and corrected it is doubtful that any biomarkers will be able to be dis-
covered unless an extremely large sample size is used. The results of this analysis

can be used to recommend the sample size that would be needed.

5.2 Future Work

This project should be viewed as a preliminary study designed to highlight
areas for future research. The main focus of this project was to identify sources
of variability, but only four sources were examined. More experimentation could
be done to quantify other sources of variability not explored in this study, such
as variability due to dietary changes or the location where the blood was drawn.
Further experimentation could be used to separate the variance components used
in this study, such as separating the machine variability into the error due to the
autosampler from the error due to the affinity column and mass spectrometer.

The algorithms used in this paper were thoughtfully designed, and exten-
sively tested, but are far from optimal. The peak detection and peak alignment
algorithms could be improved by combining other methods discussed in the liter-
ature review, or perhaps with a new algorithm specially designed to handle the
problems unique to proteomics. Even the parameters used in the algorithms were
chosen because they appeared to yield the best results, while a more rigorous

approach might find a better solution.
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Appendix A

Functions and global variables used in the other R codes

These functions are used in many of the other codes that are run in the
programming language R. There are also a few global variables that are referenced

by the functions.

setwd (°C:\\Documents and Settings\\administrator\\Desktop\\Proteomics\\Data’)
library(MASS)

HHGHEHFHFHHHHRHEHEHFRFHHAHEHEDATA FILESHH#HSEHFHFHHHHEHFHFHFHFHHHHEH SRS HAHHHHH
info<-read.table(’info.dat’ ,header=TRUE)
vardata<-read.table(’vardata.dat’ ,header=T)
sdmatfix<-read.table(’C:\\Documents and Settings\\administrator\\Desktop\\
Proteomics\\Data\\sdmatfix.dat’,header=FALSE)
sdmatfix<-as.matrix(sdmatfix)

rownames (sdmatfix)<-c(’Timel’,’Time2’,’Time3’,’Time4’, ’Time5’, ’Time6’,
’Time7’,’Time8’,’Time9’,’Timel10’,’Timel1l’)

colnames (sdmatfix)<-c(’500s’,’700s’,’900s’,°1100s’,71300s’,’1500s’,
’1700s’,°1900s’,°2100s”,°2300s”)

summits<-read.table(’C:\\Documents and Settings\\administrator\\Desktop\\
Proteomics\\Data\\summits.dat’,header=FALSE)

summits<-as.matrix(summits)

rownames (summits)<-c(’Timel’,’Time2’,’Time3’,’Time4’,’Time5’,’Time6’,
’Time7’,’Time8’,’Time9’,’Timel0’,’Timel1’)

colnames (summits)<-c(’500s’,’700s’,°900s’,°1100s’,°1300s’,°1500s,
’1700s’,71900s’,°2100s”,°2300s’)

HtH AR H SRR HHH A FUNCT TONS#E# S # S # S
##FUNCTION TO READ IN THE PEAK DATA

getpeakdata<-function(){

peaks<-matrix(0,0,5)

colnames (peaks)<-c(’mz’,’intensity’,’sample’, ’window’,’obs’)

for(sample in 1:20){

for(window in 1:11){
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name<-paste("peaks.",sample,"." ,window,".dat",sep="")
data<-as.matrix(read.table(name,header=T))
data<-cbind(data,rep(sample,nrow(data)) ,rep(window,nrow(data))
,cbind(seq(1,nrow(data))))

peaks<-rbind(peaks,data)

}

}

#add a column to keep track of peak groupings (-1 means no group)
peaks<-cbind(peaks,rep(-1,nrow(peaks)))
colnames (peaks) [6]<-’group’

peaks<-as.data.frame(peaks)

peaks

}

##FUNCTION TO PLOT PEAKS ACROSS SAMPLES
plotpeaks<-function(xbegin=500,xend=505, samples=20,window=1,pchp=19){
plot(peaks[peaks$sample==1 & peaks$window==window &
peaks$mz>xbegin & peaks$mz<xend,1],

peaks [peaks$sample==1 & peaks$window==window &
peaks$mz>xbegin & peaks$mz<xend,?2],
xlab="m/z",ylab="Intensity",col=colors() [30],pch=pchp,
xlim=c(xbegin-(xend-xbegin)*.1,xend))
for(i in 2:samples){
points(peaks [peaks$sample==i & peaks$window==window &
peaks$mz>xbegin & peaks$mz<xend,1],

peaks [peaks$sample==i & peaks$window==window &
peaks$mz>xbegin & peaks$mz<xend,?2],
col=colors() [30*i],pch=pchp)
}
legend("topleft",legend=paste("smpl",1:samples),
col=colors() [(1:samples)*30],pch=pchp)
}

## A FUNCTION TO WRITE A DATA SET TO A FILE
writedata<-function(data,name){
filename<-paste("C:\\Documents and

Settings\\administrator\\Desktop\\Proteomics\\Data\\",,name,".dat",sep="")

write(t(data),filename,ncolumns=ncol(data))

}

##FUNCTION TO FIND THE MAXIMUM OF A CERTAIN VARIABLE IN A LIST
findmax<-function(lista,name,start=500,stop=2500){
listb<-lista[names(lista)==name]

maxa<-0

for(i in 1:length(listb)){

listb[[i]]<-1listb[[i]] [1ista[[i*2-1]]<stop]
listal[[i*2-11]<-1lista[[i*2-1]] [1ista[[i*2-1]]<stop]
listb[[i]]<-1istb[[i]] [lista[[i*2-1]]>start]

if (max(listb[[i]])>maxa){

maxa<-max(listb[[i]])

}

}
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maxa

##FUNCTION TO GET THE RIGHT IDS
getid<-function(window,runnumber=1){
ids<-info[info$time_window==window, 1]
runid<-as.numeric(as.vector(ids) [runnumber])
runid

}

##FUNCTION TO PLOT A CERTAIN TIME BETWEEN CERTAIN WINDOWS
plotmz<-function(time,xmin,xmax=0,windows=0){

if (xmin<100){

xmax<-xmaxfix[time,xmin]
xmin<-xminfix[time,xmin]

}
colors<-c(’black’,’red’,’blue’,’green’,’orange’, ’purple’,
’yellow’,’brown’, ’magenta’)

if (windows==0){

windows<-length(colors)

}

data<-as.list (NULL)

for(i in 1:windows){
getinfo<-getdata(time,getid(time,i),xmin,xmax)
data<-as.list(c(data,getinfo))

}
plot(datal[1]],datal[2]],type="1",col=colors[1],
ylim=c(0,findmax(data,"intens")) ,xlab="M/Z",
ylab="Intensity",main=paste("Time",time))

for(i in 2:windows){
lines(datal[[2*i-1]],data[[i*2]],
col=colors[i%/length(colors)],type="1")

}

}

##FINDS THE STD DEV OF THE PEAKS AT TIME T BETWEEN SPECIFIED M/Z
sdofpeak<-function(time,xmin,xmax){

data<-as.list (NULL)
ids<-info[info$time_window==time, 1]

for(i in 1:length(ids)){
getinfo<-getdata(time,ids[i] ,xmin,xmax)
data<-as.list(c(data,getinfo))

if (i==1){

names (data)<-c(’MZ1’,’Intensityl’)

Yelsed{

names (data)<-c(names(data) [1: (length(data)-2)1],
paste(°MZ’,i,sep=""),paste(’Intensity’,i,sep=""))
}

}
xs<-NULL
for(i in 1:length(ids)){
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xs<-c(xs,mean((datal[[i*2-1]]) [data[[i*2]]==max(datal[[i*2]]1)]1))
}

sd(xs)

}

####A FUNCTION TO GET A CERTAIN PIECE OF DATA
getdata<-function(window,runid,start=500,stop=2500){

if (runid<50){ #WASN’T REALLY A RUNID, IT WAS A RUNNUMBER
runid<-getid(window,runid)
}

filename<-paste("C:\\Documents and Settings\\administrator\\Desktop\\
Proteomics\\Raw Data\\dataW",

window,"R",runid,".dat",sep="")

data<-read.table(filename)

names (data)<-c(’mz’,’intens’)

data<-datal[data$mz>=start & data$mz<=stop,]

data

}

###GETS DATA FROM SEVERAL TIME WINDOWS
windowlist<-function(window){
datalist<-as.list(NULL)

for(i in 1:20){
getinfo<-getdata(window,i)
datalist<-as.list(c(datalist,getinfo))
}

datalist

}

#PLOTS A WINDOWLIST
plotlist<-function(data,start=500,end=2500,time="unknown"){
colors<-c(’black’,’red’,’blue’,’green’,’orange’, ’purple’,’yellow’,
’brown’,’magenta’)
plot(datal[1]],datal[2]],type="1",col=colors[1],
xlim=c(start,end),ylim=c(0,findmax(data,"intens",start,end)),
xlab="m/z",ylab="Intensity" ,main=paste("Time",time))

for(i in 2:(length(data)/2)){
lines(datal[[2*i-1]],datal[[i*2]],col=colors[i%%length(colors)],
type="1")

}

}

#CHOPS OUT VALUES BELOW A CERTAIN THRESHOLD

cutnoise<-function(data){
axis<-c¢(500,700,900,1100,1300,1500,1700,1900,2100,2300)
unnormal<-c(.2,.2,.2,.5,1.5,1,.6,.25,.2,.13)
normal<-c(.00015,.00025, .0002, .002,.0035, .0015, .0006, .003, .0002, .0002)
unnormalcut<-.4

normalcut<-.0002

for(i in 1:(length(data)/2)){

tempi<-datal[i*2]]

tempm<-datal[[i*2-1]]
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n<-length (tempm)
area<-sum( (tempm[-1]-tempm[-n])* (tempi[-1]+tempi[-n])/2)
#ASSUME NOT NORMALIZED
if (abs(area-1)>5){
cutoff<-unnormalcut

}

#ASSUME NORMALIZED

if (abs(area-1)<=5){
cutoff<-normalcut

}
tempi[tempi<cutoff]<-0
datal[[i*2]]<-tempi

}

data

}

##PERFORMS THE LOG TRANSFORMATION ON THE INTENSITIES
loglist<-function(data){

for(i in 1:(length(data)/2)){
data[[i*2]]1<-log(data[[i*2]]+1)

}

data

}

###SETS TOTAL SIGNAL TO ONE
normalize<-function(data){
for(i in 1:(length(data)/2)){
tempm<-datal[i*2-1]]
tempi<-datal[[i*2]]
n<-length(tempm)
area<-sum((tempm[-1]-tempm[-n])* (tempi [-1]+tempi[-n])/2)
datal[[i*2]]<-datal[[i*2]]/area
}

data

}

makepeakmatrix<-function(peaks,data){

runs<-20
peakintensmat<-matrix(0,length(peaks) ,runs)
peakmzmat<-matrix(0,length(peaks),runs)
for(peak in 1:length(peaks)){

for(run in 1:runs){
peakxy<-findpeak (peaks [peak] ,datal[run*2-1]],data[[run*2]])
peakintensmat [peak,run] <-peakxy$intens
peakmzmat [peak, run] <-peakxy$mz

}

}
answer<-list(intens=peakintensmat,mz=peakmzmat)

}

findpeak<-function(peak,mz,intens){
b0<-0.0052170670
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b1<-0.001793642

peaksd<-bO*exp (bl*peak)

lower<-peak-3*peaksd

upper<-peak+3*peaksd
yvaluepeak<-max (intens [mz>lower & mz<upper])
xvaluepeak<-mz[intens==yvaluepeak]

xvaluepeak<-min(xvaluepeak [xvaluepeak>lower & xvaluepeak<upper])

answer<-list (mz=xvaluepeak,intens=yvaluepeak)
answer

}

HHHH R HHSETTING UP VARIABLES######## #####HHHHH#### ###HHH##

testb<-getdata(5,1)
testblnc<-cutnoise(normalize(loglist(test5)))
logtestb<-loglist(getdata(5,1))
testl<-getdata(l,1)

#wtestb5<-windowlist (5)
#wtestbn<-normalize(wtestb)
#wtestbnc<-cutnoise (wtest5)
#wtestbc<-cutnoise(wtest5)
#wtestbcl<-loglist(wtestbc)
#wtestbcln<-normalize (wtest5cl)
wtestb5<-windowlist (5)

wtest5l<-loglist (wtestb)

wtestbln<-loglist (wtest51)
wtestblnc<-cutnoise(wtest51ln)
sderrors<-cbind(stack(as.data.frame(summits)) [, 1],
stack(as.data.frame(sdmatfix)) [,1])

colnames (sderrors)<-c(’mz’,’error’)
sderrors<-sderrors[sderrors[,1]'!=0,]
sderrors<-sderrors[order(sderrors[,1]),]
peakb5<-c(516.298,516.8446,555.3217,555.8708,606.382,
607.385,652.4168,654.9124,

708.4486,709.9602,756.4866,756.9905,802.4866,803.4991,852.5389,853.5562,
901.5246,957.5817,958.58,1010.65,1013.616,1062.63,1064.662,
1117.678,1119.615,1161.716,1162.726,1214.795,1218.479,1259.473,1300.765,
1301.751,1388.455,1392.353,1461.69,1486.765,1571.078,
1675.713,1624.287,1763.052,1783.762,1885.164,2229.556)

mats<-makepeakmatrix(peak5,wtestb)
meanintens<-apply(mats$intens,1,mean)
sdintens<-apply(mats$intens,1,sd)
peaks<-getpeakdata()
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Appendix B

Code in R to get the preliminary results based on hand chosen peaks

This code was used to estimate the variability of peak center as a function
of m/z. These peaks were chosen by hand, and the hand chosen estimates were

used to improve those same estimates by restricting the window widths.

##MAKE A TABLE OF STANDARD DEVIATIONS AROUND VARIOUS PEAKS
xmins<-rbind (

cbind(501,701.5,902,1102.1,1309,1510.1,0,0,0,0), #Time 1

cbind (500.8,709.5,904,1107.1,1309,1507,1717.2,1959,2115,0), #Time 2
cbind(500,706,903,0,0,0,0,0,0,0), #Time 3
cbind(501,704,900,1105,1308,0,0,0,0,0), #Time 4
cbind(502,706.7,910,1104,1321.4,1539.6,1736,1940,2170,2331), #Time 5
cbind (502,705.2,907,1110.2,1310,1508.5,1760,1942,2167,2320) , #Time 6
cbind (506,704.2,903,1104.4,1331.6,1522.5,1738,0,0,0), #Time 7
cbind(502,701,903,1112.2,1304.1,0,1737,1931,0,0), #Time 8
cbind(502.1,701,904.2,1105.3,1311.5,0,0,0,0,0), #Time 9

cbind (502,703.4,905.2,1104.4,1314.1,1515.5,1703.5,1931.6,2125,2322.4),
#Time 10

cbind (520,703,900,1108,1305.4,1515.5,1738.6,1947.6,2112,2327.4)

#Time 11

)

rownames (xmins)<-c(’Timel’,’Time2’,’Time3’,’Time4’,’Time5’,’Time6’,
’Time7’,’Time8’,’Time9’,’Timel0’,’Timel1’)

colnames (xmins)<-c(’500s’,’700s’,°900s’,71100s’,°1300s’,°1500s’,71700s”,
’1900s’,°2100s’,72300s”)

xmaxs<-rbind(

cbind (501.5,702,902.8,1102.9,1310,1510.8,0,0,0,0),

cbind (502,710,905,1107.8,1310,1508,1718.1,1959.5,2120,0),

cbind (500.8,707,904,0,0,0,0,0,0,0),
cbind(501.7,705,901.2,1106,1309.2,0,0,0,0,0),

cbind (503,707.2,911,1108,1322.1,1540.2,1739,1946,2173,2336) ,

cbind (502.8,705.8,908,1111.2,1310.6,1509.3,1766,1945,2175,2325) ,

cbind (506.8,704.8,904,1105,1332.1,1524.5,1740,0,0,0),
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cbind (503,702,904,1113.2,1305.2,0,1740,1933,0,0),

cbind (502.6,702,905,1106,1312.5,0,0,0,0,0),

cbind (502.6,703.8,906,1105,1315.3,1516.5,1704.5,1932.1,2126,2322.9),
cbind (521,704,901,1109,1306.2,1516.5,1739.8,1948.2,2112.8,2327.9)

)

rownames (xmaxs)<-c(’Timel’,’Time2’,’Time3’,’Time4’,’Time5’, ’Time6’,
’Time7’,’Time8’,’Time9’,’Time10’,’Timell’)

colnames (xmaxs)<-c(’500s’,’700s’,°900s’,71100s”,°1300s’,’1500s",
’1700s’,°1900s’,°2100s”,°2300s”)

##CREATE NEW MATRICIES WITH THE CENTER OF THE PEAKS OR THE LEFT ENDPOINT
centermat<-(xmins+xmaxs) /2

leftpoint<-xmins

for(row in 1:nrow(xmins)){

for(column in 1:ncol(xmins)){

if (leftpoint [row, column]==0){

leftpoint [row,column]<-leftpoint [row,column-1]
centermat [row,column] <-centermat [row,column-1]
}

}

}

centers<-apply(centermat,2,mean)

##FIND THE PEAKS FOR THE DISTRIBUTIONS (BETTER THAN CENTERMAT)
summits<-matrix(0,nrow(xmins) ,ncol(xmins))

par (mfrow=c(1,1))

for(row in 1:nrow(xmins)){

for(column in 1:ncol(xmins)){

if (xmins [row,column] !=0){
plotmz(row,xmins [row,column] ,xmaxs [row,column])

summits [row, column]<-locator (1) $x

}

}

}

summits<-read.table(’C:\\Documents and Settings\\administrator\\Desktop\\
Proteomics\\Data\\summits.dat’,header=FALSE)
summits<-as.matrix(summits)

rownames (summits)<-c(’Timel’,’Time2’,’Time3’,’Time4’,’Time5’,
’Time6’ ,’Time7’,’Time8’,’Time9’,’Timel10’,’Timell’)

colnames (summits)<-c(’500s’,’700s’,’900s’,°1100s’,°1300s’,’1500s’,
’1700s’,°1900s’,°2100s”,°2300s”)

##CALCULATE THE STANDARD DEVIATIONS BASED ON MY BAD WINDOWS XMINS XMAXS
Sys.time()

sdmat<-matrix (0,nrow(xmins) ,ncol(xmins))
times<-c(1,2,3,4,5,6,7,8,9,10,11)

for(time in 1:nrow(xmins)){

for(window in 1:ncol(xmins)){

if (xmins [time,window]==0){

xmins [time,window] <-xmins[time,window-1]

xmaxs [time,window] <-xmaxs [time,window-1]

sdmat [time,window]<-0
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Yelsed{

sdmat [time,window]=sdofpeak(times [time],
xmins [time,window] ,xmaxs [time,window])

}

}

}

#READ IN THE MATRIX OF STANDARD DEVIATIONS AND FIX THE REDUNDANCIES

sdmat<-read.table(’C:\\Documents and
Settings\\administrator\\Desktop\\Proteomics\\Raw
Data\\dataWsdRmatrix.dat’,header=FALSE)

for(row in 1:nrow(sdmat)){

for(column in ncol(sdmat):2){

if (sdmat [row, column] ==sdmat [row,column-1]){

sdmat [row,column] <-0

}

}

}

##CALCULATE THE AVERAGE ERROR WITHOUT THE ZEROS
meansd<-as.vector (NULL)
test<-0

for(column in 1:ncol(sdmat)){
count<-0

sum<-0

for(row in 1:nrow(sdmat)){

if (sdmatold[row,column] !=0){
sum<-sum+sdmatold[row, column]
count<-count+1

}

}

meansd [column] <-sum/count

}

##REGRESSION ON THE STANDARD DEVIATIONS
regress<-1m(log(meansd) “centers)
bO<-regress$coefficients[[1]]
bi<-regress$coefficients[[2]]
b0<--5.094748

b1<-0.002061783

##A FEW STANDARD DEVIATIONS AS EXAMPLES
xx<-seq (500, 2300, by=200)

se<-round (exp(bO+bl*xx) ,4)
rbind(as.character (xx),se)

it H#EBEGIN SECOND TRY (TO IMPROVE PREVIOUS ESTIMATES
##MAKE A NEW SET OF XMINS AND XMAXS WITH THE FIXED WINDOW SIZE

xminfix<-xmins

xmaxfix<-xmaxs

for(row in 1:nrow(xmins)){
for(column in 1:ncol(xmins)){
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if (summits [row,column] !=0){

halfwidth<-3*(exp (bO+bl*summits [row,column]))
xminfix [row,column] <-summits [row,column]-halfwidth
xmaxfix [row,column] <-summits [row,column]+halfwidth
}

else{

xminfix [row,column]<-xminfix[row,column-1]

xmaxfix [row,column]<-xmaxfix[row,column-1]

}

}

}

###CALCULATE THE STANDARD DEVIATIONS WITH FIXED WINDOWS
sdmatfix<-matrix(0,nrow(xminfix) ,ncol (xminfix))
times<-c¢(1,2,3,4,5,6,7,8,9,10,11)

for(time in 1:11){

sdmatfix[time,1]<-sdofpeak(times[time] ,xminfix[time,1],xmaxfix[time,1])
for(window in 2:ncol(xminfix)){

if (xminfix[time,window]==xminfix[time,window-1]){
sdmatfix[time,window]<-0

Yelsed{

sdmatfix[time,window]=sdofpeak(times[time],

xminfix[time,window] ,xmaxfix[time,window])

}

writedata(sdmatfix,"sdmatfix")

}

}

sdmatfix<-read.table(’C:\\Documents and Settings\\administrator\\Desktop\\
Proteomics\\Data\\sdmatfix.dat’,header=FALSE)
sdmatfix<-as.matrix(sdmatfix)

rownames (sdmatfix)<-c(’Timel’,’Time2’,’Time3’,’Timed’,’Time5’,
’Time6’,’Time7’,’Time8’,’Time9’,’Timel0’,’Timell’)

colnames (sdmatfix)<-c(’500s’,’700s’,’900s’,’1100s’,°1300s’,°1500s,
’1700s’,°1900s’,°2100s’,°2300s’)

sdmatold<-read.table(’C:\\Documents and Settings\\administrator\\Desktop\\
Proteomics\\Data\\sdmatfix(bad) .dat’ ,header=FALSE)

rownames (sdmatold)<-c(’Timel’,’Time2’,’Time3’,’Time4’,’Time5’,’Time6’,
’Time7’,’Time8’,’Time9’,’Timel0’,’Timell’)

colnames (sdmatold)<-c(’500s’,’700s’,’900s’,’1100s’,°1300s’,°1500s,
’1700s’,71900s’,°2100s’,°2300s”)

summitsold<-read.table(’C:\\Documents and Settings\\administrator\\Desktop\\
Proteomics\\Data\\summits(bad) .dat’ ,header=FALSE)

rownames (summitsold)<-c(’Timel’,’Time2’,’Time3’,’Time4’,’Time5’,’Time6’,
’Time7’,’Time8’,’Time9’,’Timel10’,’Timell’)

colnames (summitsold)<-c(’500s’,’700s’,’900s’,°1100s’,°1300s’,71500s”,
’1700s’,°1900s’,°2100s”,°2300s’)

##CREATE VECTOR OF X AND Y COORDINATES FOR M/Z VS. SD DEV.
sderrors<-cbind(stack(as.data.frame(summits)) [, 1],
stack(as.data.frame(sdmatfix)) [,1])

colnames (sderrors)<-c(’mz’,’error’)
sderrors<-sderrors[sderrors[,1]'!=0,]
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sderrors<-sderrors[order (sderrors[,1]),]

par (mfrow=c(1,1))
plot(sderrors[,1],sderrors[,2],xlab="M/Z",ylab="Standard
Error",ylim=c(0, .9) ,main="Standard Errors by M/Z")

##CREATE A MATRIX IS SDERRORS FOR A UNIFORM DISTRIBUTION (BAD PEAKS)
unifmat<-matrix(0,nrow(summits) ,ncol (summits))

for(row in 1:nrow(summits)){

for(column in 1:ncol(summits)){

if (summits [row,column] '=0){

a<-xminfix[row, column]

b<-xmaxfix[row,column]

unifmat [row,column] <-sqrt ((b-a)“~2/12)

}

}

}
##EXAMINE WHETHER ANY PEAKS ARE UNIFORM ACROSS THE DISTANCE

round (unifmat-sdmatfix,4)

##REGRESSION ON THE NEW FIXED WINDOWS STANDARD ERRORS
regress2<-1m(log(sderrors[,2]) “sderrors[,1])
b02<-regress2$coefficients[[1]]
bl2<-regress2$coefficients[[2]]

b02<--5.25582

b12<-0.001793642
xx<-seq(500,2500,length=100)
yy2<-exp (b02+b12*xx)
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Appendix C

Code in R to detect peaks

First the data is log transformed and normalized, and then the peaks are

identified and recorded.

#Given x and y vectors of data points
#Return new x and y vectors with coordinates of peak values
bgsmooth<-function(x,y,tol=.1,width=.1,scan=.2,stop=0){

#ALLOW THE ALGORITHM TO BE CUT SHORT
if (stop>0){

n<-stop

Yelse{

n<-length(x)

}

#Initializing values
peak<- rep(0,n)

bg<- rep(0,n)
background<- rep(0,n)
jstart<- 1

jend<- 1

smoothy<-y

#Loop through each x value
for(i in 1:n){

#Create the window

#xlow<- x[i]-zcritical*exp(BO+B1*x[i])
#xhigh<- x[i]l+zcritical*exp(BO+B1xx[i])
xlow<-x[i]-width

xhigh<-x [i]+width

scana<-x[i]-scan

scanb<-x[i]+scan
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j<- jstart-1
jdone<- 0

#Find the beginning of the window
#(fix if the beginning is before the first x)
while(jdone==0 & j<n){

j<- j+1

if (x[jI>=scana){

jdone<-1

jstart<-j

}

}

if (jend<n){

jdone<- 0

j<- jend-1

#Find the end of the window
#(fix if maximum is after last x)
while(jdone==0 & j<n){
j<-j+1

if (x[jI>scanb){

jdone<-1

jend<-j-1

}

}

if (jdone==0){

jend<- n

}

}

#Find the min and the max in the window
#And add up values for the mean
maxy<- y[jstart]

miny<- y[jstart]

sumy<- O

sumy2<- 0

tolmean<-0

ny<- 0

toln<- 0

windowvalues<-rep(0, jend-jstart+1)
for(j in jstart:jend){
windowvalues[j-jstart+1]1<-y[j]

if (x[j1>xlow & x[jl<xhigh){

if (y[j]>maxy){
maxy<- y[j]

}

if (y[j1<miny){
miny<- y[j]

}

sumy<- sumy+y [j]
sumy2<- sumy2+y[j]~2
ny<- ny+1

85

www.manharaa.com




}
tolmean<-tolmean+y[j]
toln<- toln+1

}

#Calculate the mean value in the window for a simple smoother
meany<- sumy/ny

stddevy<- (sumy2-ny*meany~2)/(ny-1)

tolmean<-tolmean/toln

tolmad<-mad(windowvalues)

tolmedian<-median(windowvalues)

#Next find the range
rangey<- maxy-miny

#Calculate the tolerance
tolerance<-tolmean*tol
tolerance2<-tolmedian*tol
tolerancez<-tolmedian+tol*tolmad

#If it’s not above the tolerance
if (maxy<tolerancez){

#not a peak

peak[il<- 0

background[i]<- y[i]

#it is just background

bglil<- 1

Yelse{

#If it is above tolerance

#Then it is signal + background
background[i]<- 0

#it is not just background
bglil<- 0

#if this is the maximum in the window (the peak)
if (y[i]==maxy){

#This is a peak

peak[il<- 1
}elsed{
peak[il<- 0

#make this smoothed
smoothy [1]<- meany
}

}

} #End the for(i in 1:n) for each x value
#Now do the background correction

istart<- FALSE
iend<- FALSE

i<-0
if (bg[1]1==0){
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bglil<- 1

}

while(i<n){

#Find the start and finish of each interval of noisy baseline
while(!istart & i<n){

i<- i+l

#If this is the beginning of a noisy valley
if (bg[i]1==0){

istart<- TRUE

firsti<- i-1

}

}

if (istart){

i<-firsti

#Find the end of each baseline interval
while('iend & i<n){

i<- i+1

if (bgl[il==1){
iend<- TRUE
lasti<- i

}

}

}

#Linear interplation below

if (istart & iend){

#RESET

istart<- FALSE

iend<- FALSE

m<- (y[lasti]-y[firsti])/(x[lasti]-x[firsti])
b<- y[lasti]-m*x[lasti]

for(k in (firsti+l):(lasti-1)){
background [k]<- m*x[k]+b

}

i<- lasti

}

} #end while(i<n) of fixing background interpolation

#Now get the background corrected version
for(i in 1:n){

smoothy [1]<-smoothy [i]-background[i]
if (smoothy[i]1<0){

smoothy [1]<-0

}

}

answerx<-x [peak==1]

answery<-smoothy [peak==1]
answer<-list (x=answerx,y=answery)
answer

3
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SRR R R R R
###EXAMINATION OF PARAMETERS

width<-.12

tolerance<-2

scan<-1.8

x1a<-500

x2a<-505

x1b<-1105

x2b<-1110

par (mfrow=c(2,1))

plot(test5ln,xlim=c(xla,x2a),type="1",
ylim=c(0,max(test5ln$intens[test5lndmz>xla & testb5ln$mz<x2al)),
main=paste("width:",width," tol:",tolerance," scan:",scan,sep=""))
bgb<-bgsmooth(test5ln$mz [test5ln$mz>xla &

test51ln$mz<x2a] ,test51ln$intens[test51n$mz>xla &

test51ln$mz<x2al ,width=width,tol=tolerance,scan=scan,stop=0)
#lines (bgb$x,bgb$y,1ty=2)

points(bgb$x,bghb$y,pch=2,col="red")
plot(test5ln,xlim=c(x1b,x2b),type="1",
ylim=c(0,max(test51ln$intens[test5ln$mz>x1b & test5ln$mz<x2b]l)),
main=paste("width:",width," tol:",tolerance," scan:",scan,sep=""))
bgb<-bgsmooth(test51ln$mz[test5ln$mz>xlb &

test51n$mz<x2b] ,test51n$intens [test51n$mz>x1b &

test51ln$mz<x2b] ,width=width,tol=tolerance,scan=scan,stop=0)
#lines (bgb$x,bgb$y,lty=2)

points(bgh$x,bgb$y,pch=2,col="red")

testb<-getdata(5,1)

testbln<-normalize(loglist(test5))

histx<-.0015

mzsplit<-700

hist(test5ln$intens[testbln$intens<histx &

test51ln$mz<mzsplit] ,breaks=200,xlim=c(0,histx) ,main="Histogram of

intensities of m/z values below 700",xlab="Intensity",ylab="Frequency")

hist(test51ln$intens[test5ln$intens<histx &
test51ln$mz>mzsplit] ,breaks=200,x1lim=c(0,histx) ,main="Histogram of

intensities of m/z values above 700" ,xlab="Intensity",ylab="Frequency")

hist(testbln$intens[test51ln$intens<histx] ,breaks=200,
xlim=c(0,histx) ,main="histogram of intensities",
xlab="Intensity",ylab="Frequency")

tolerance<-.0005

data<-test5ln[test51n$m=z>900, ]
peakpeek<-data$intens<tolerance

peakwidths<-0

front<-0

end<-0

for(i in 2:length(peakpeek))q{

if (peakpeek[i-1]==0 & peakpeek[i]==1){
front<-data$mz[i]

}

if (peakpeek[i-1]==1 & peakpeek[i]==0 & front>0){
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end<-data$mz[i]

}

if (front>0 & end>0){
peakwidths<-c(peakwidths,end-front)

front<-0

end<-0

}

}

hist(peakwidths [peakwidths>.2 &

peakwidths<.6] ,breaks=250,xlim=c(.2,.6) ,main="Estimates of peak widths
above m/z value of 900",xlab="Estimated peak widths")

## A FUNCTION TO WRITE A DATA SET TO A FILE
writedata<-function(data,name){

filename<-paste("C:\\Documents and
Settings\\administrator\\Desktop\\Proteomics\\Data\\",,name,".dat",sep="")
write(t(data),filename,ncolumns=ncol(data))

}

pr s i i s s S s e e s e S s S S e S S e e e e S e T R
###PEAK PICKING AND SAVING ALL THE DATA

width<-.12

tolerance<-2

scan<-1.8

#CREATE A LIST OF SMOOTHED OUTPUT

#bglist<-as.list (NULL)

#FOR EACH OF THE 20 SAMPLES RUN

for(sample in 1:20){

#bglist<-as.list (NULL)

#FOR EACH OF THE 11 TIME WINDOWS

for(window in 1:11){

data<-getdata(window, sample)

data<-normalize(loglist(data))
data<—bgsmooth(data$mz,data$intens,width=width,tol=tolerance,scan=scan)
data<-cbind(data$x,data$y)

filename<-paste("C:\\Documents and Settings\\administrator\\Desktop\\
Proteomics\\Data\\Peaks.",sample,".",window,".dat",sep="")
write(c(’x’,’y’) ,filename,2)
write(t(data),filename,ncolumns=ncol(data),append=TRUE)

}

}
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Appendix D

Code in R to align peaks across samples

Takes the output from the peak detection and clusters them together across

the twenty samples.

##ALIGNMENT OF PEAKS ACROSS SAMPLES
setwd (’C:\\Documents and Settings\\administrator\\Desktop\\Proteomics’)

HHGFHHF R R R R R R
##READING IN THE PEAK DATA

peaks<-matrix(0,0,5)

colnames (peaks)<-c(’mz’,’intensity’,’sample’,’window’,’obs’)
for(sample in 1:20){

for(window in 1:11){
name<-paste("Data\\peaks.",sample,".",window,".dat",sep="")
data<-as.matrix(read.table(name,header=T))
data<-cbind(data,rep(sample,nrow(data)) ,rep(window,nrow(data))
,cbind(seq(1,nrow(data))))

peaks<-rbind(peaks,data)

}

}

#add a column to keep track of peak groupings (-1 means no group)
peaks<-cbind(peaks,rep(-1,nrow(peaks)))
colnames (peaks) [6]<-’group’

peaks<-as.data.frame(peaks)

HHHAHBHHAHHAH B HAHHAHBHHAH B R B R AR BRH B HAH B H R HAH B H B HAH RS H AR H R HHE
##FUNCTION TO PLOT PEAKS ACROSS SAMPLES
plotpeaks<-function(xbegin=500,xend=505, samples=20,window=1,pchp=19){
plot(peaks [peaks$sample==1 & peaks$window==window &
peaks$mz>xbegin & peaks$mz<xend,1],

peaks [peaks$sample==1 & peaks$window==window &
peaks$mz>xbegin & peaks$mz<xend,?2],
main=paste("Plot of peaks between ",xbegin," and ",xend),
xlab="m/z",ylab="Intensity",col=colors() [30],pch=pchp,
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xlim=c(xbegin-(xend-xbegin)*.1,xend))
for(i in 2:samples){
points(peaks [peaks$sample==i & peaks$window==window &
peaks$mz>xbegin & peaks$mz<xend,1],
peaks [peaks$sample==i & peaks$window==window &
peaks$mz>xbegin & peaks$mz<xend,?2],
col=colors() [30*i],pch=pchp)
}
legend ("topleft",legend=paste("smpl",1:samples),
col=colors() [(1:samples)*30],pch=pchp)
}

HHHAHBHHAHHAHBHHAHHEHBEHAH B HBHHAH RS HBHHAH B HEHHAH B HBH R R RS H AR R R HHE
##Plotting one specific group
plotpeakgroup<-function(group,pchp=19,zscore=4,xmin=-1,xmax=-1,
ymin=-1,ymax=-1,type="plot"){
plotdata<-peaks[peaks$group==group, ]
meanmz<-mean (plotdata$mz)
meani<-mean(plotdata$intensity)
sdmz<-getsdmz (meanmz)

sdi<-getsdi(meani)

if (xmin==-1){

xmin<-meanmz-zscore*sdmz

}

if (xmax==-1){

xmax<-meanmz+zscorexsdmz

}

if (ymin==-1){

ymin<-min(0,meani-zscore*sdi)

}

if (ymax==-1){

ymax<-meani+zscore*sdi

}

if (type=="plot"){
plot(plotdata$mz[plotdata$sample==1],
plotdata$intensity[plotdata$sample==1],
main=paste("Group",group) ,xlab="m/z’,ylab=’Intensity’,
x1lim=c (xmin,xmax) ,

ylim=c(ymin,ymax) ,

pch=pchp, col=colors() [30])

}

if (type=="points"){
points(plotdata$mz[plotdata$sample==1],
plotdata$intensity[plotdata$sample==1],
pch=pchp, col=colors() [30])

}

for(i in 2:20){

if (nrow(plotdata[plotdata$sample==1i,]) !=0){
points(plotdata$mz[plotdata$sample==i],
plotdata$intensity[plotdata$sample==i],
col=colors() [30*i] ,pch=pchp)
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}

}
legend("topleft",legend=paste("smpl",1:20),
col=colors() [(1:20)*30] ,pch=pchp)

}

plotpeakgroup (group=1,xmin=499, xmax=505,ymin=0, ymax=.0033)
for(i in 2:10){

plotpeakgroup(group=i,type=’points’)

}

HEHSFHH AR H B H AR HE R R R R R
##THE ALGORITHM IN FORTRANABLE CODE

###THE FOUR VECTORS NEED TO MATCH (LIKE A DATA FRAME)
grouppeaks<-function(mz,intensity,sample,window,zscore=3.090){
group<-rep(-1,length(mz))

thispeak<-0

bOmz<--5.26

bimz<-.00179

b0i<-.0000282

bl1i<-.299

for(thiswindow in 1:1){

mzspot<--1 #WHICH M/Z VALUE TO INITIALIZE WITH (will start at O)

#VARIABLES FOR THE PLACES WHERE EACH SAMPLE BEGINS AND ENDS
a<-rep(0,20)
b<-rep(0,20)

#FIND THE BEGINNING AND END OF EACH SAMPLE IN THIS WINDOW
currentsample<-0

for(i in 1:length(mz)){

if (window[i]==thiswindow & currentsample==0){
currentsample<-sample[i]

alcurrentsample]<-i

}

if (i==length(mz) & currentsample>0){
blcurrentsample]<-i

currentsample<-0

Yelseq{

if (currentsample>0 & (window([i+1]!=thiswindow |
sample [i+1] !=currentsample)){
blcurrentsample]<-i

currentsample<-0

}

}

}

#The number of mz values in sample 1 for this time window
lastmz<-b[1]-a[1]

#while there are still mz values to explore in sample 1
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while (mzspot<=lastmz){

##LOOKING FOR THE NEXT PEAK CENTER

thispeak<-thispeak+l #the number of peaks already found
mzspot<-mzspot+1 #the number of points from sample 1 used to start
peakmzs<-rep(-1,20) #the mz indexes of the peaks in each sample

#KEEP A MATRIX OF SOLUTIONS (TO AVOID OSCILLATION)
solutionrows<-0
oldsolutions<-matrix(0,1,20)

#START THE INTIAL GUESS AS THE NEXT DATA POINT IN SAMPLE 1
initialize<-TRUE

meanmz=0;meani=0;sdmz=0;sdi=0

#keep track of whether the algorithm has converged
changes<-TRUE

while(changes){

for(i in 1:20){

if (initialize){

#PICK INITIAL GROUP (as next point from sample 1)
peakmzs [i]<-mzspot #the peak is the mzth spot in the arrary
meanmz<-mz[a[i]+mzspot] #start at al[l] and continue mzspot more
meani<-intensity[a[i]+mzspot]

sdmz<-exp (bOmz+blmz*meanmz)

sdi<-bOi+bli*meani

initialize<-FALSE

Yelseq{

leftpoint<-meanmz-zscore*sdmz
rightpoint<-meanmz+zscore*sdmz
toppoint<-meani+zscorex*sdi
bottompoint<-meani-zscorex*sdi

distance<-9999999

winner<-0

#find unused dots within the bubble

for(j in alil:b[i]){

if(mz[jl>leftpoint & mz[jl<rightpoint & intensity[j]l>
bottompoint & intensity[jl<toppoint & group[jl==-1){
zi<-(intensity[j]-meani)/sdi

zmz<-(mz [j] -meanmz) /sdmz

thisdistance<-sqrt(zmz"2 + zi"2)

if (thisdistance<distance){

winner<-j

}

}

}

if (winner>0){

thismz<-mz [winner]
thisi<-intensity[winner]
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peakmzs [i]<-winner-al[i]

#reinitialize values

n<-0

for(j in 1:20){

if (peakmzs [j1>-1){

n<-n+1

}

}
meanmz<- (meanmz* (n-1)+thismz) /n
meani<-(meani*(n-1)+thisi)/n
sdmz<-exp (bOmz+blmz*meanmz)
sdi<-bOi+bli*meani

} #END if thisdata wasn’t empty
}# end if first initializing
} #end for i in 1:20

#CHECK IF THE ITERATIONS ARE LOOPING
if (solutionrows==1){

for(i in 1:solutionrows){
matches<-0

for(j in 1:20){

if (t(as.matrix(oldsolutions)) [i,j]l==peakmzs[j]){
matches<-matches+1

}

}

if (matches==20){

changes<-FALSE

}

}

}

if (solutionrows>1){

for(i in 1:solutionrows){
matches<-0

for(j in 1:20){

if (oldsolutions[i,jl==peakmzs[j]1){
matches<-matches+1

}

}

if (matches==20){

changes<-FALSE

}

}

}

solutionrows<-solutionrows+1

if (solutionrows==1){
oldsolutions<-peakmzs

Yelse{
newsolutions<-matrix(0,solutionrows,20)
if (solutionrows==2){
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newsolutions[1: (solutionrows-1),]<-
t(as.matrix(oldsolutions)) [(solutionrows-1),]
}elsed{

newsolutions[1: (solutionrows-1),]<-oldsolutions
}

newsolutions[solutionrows,]<-peakmzs
oldsolutions<-newsolutions

3
} #end while there have been changes==TRUE

#Store how far it’s gone along the m/z axis for sample 1
#which is used to initialize the next loop
mzspot<-peakmzs[1]

#NOW LABEL THE PEAKS ACCORDING TO THEIR GROUP

for(i in 1:20){

if (peakmzs[1]1>-1){

group [a[i] +peakmzs [i]]<-thispeak

3

}

#PLACED IN HERE JUST FOR DEBUGGING PURPOSES
#if (thispeak==3){

# mzspot<-999999

#}

} #END LOOPING DOWN THE MZ AXIS

filename<-paste("C:\\Documents and Settings\\administrator\\Desktop\\

Proteomics\\Data\\groups.",thiswindow,".dat",sep="")
write(group,filename)

J#END LOOPING THROUGH EACH WINDOW

#answer<-list (group=group,oldsolutions=oldsolutions,
peakmzs=peakmzs , peaks=thispeak)

answer<-1

answer

J4END FUNCTION

Sys.time()

test<-grouppeaks (peaks$mz,peaks$intensity,
peaks$sample,peaks$window,zscore=3.090)
Sys.time()

mz<-peaks$mz;intensity<-peaks$intensity;sample<-
peaks$sample; window<-peaks$window;zscore<-3.090
plotpeakgroup(group=1,xmin=499,xmax=505,ymin=0, ymax=.0033)
for(i in 2:3){

plotpeakgroup(group=i,type=’points’)

}

g g g S s S T s 2
##Combining the data to be used by SAS
#Add group data to peaks
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sumgroups<-0

#Do 1 and 11 seperately because the program crashed after 1
groups<-scan("groups.1.dat")

groups [groups !=-1]1<-16270+groups [groups !=-1]

peaks$group [groups!=-1]<-groups [groups!=-1]
groups<-scan("groups.11.dat")

peaks$group [groups!=-1]<-groups [groups!=-1]

numgroups<-max (peaks$group)

numnow<-NULL

for(i in 1:numgroups){

numnow<-c (numnow, sum(peaks$group==i))

if (numnow[1]<20){

peaks$group [peaks$group==1i]<--2

}

}

HERHHHHHH R R R R R R R
##HISTOGRAM OF THE CLUSTER SIZES

hist (numnow,main="",xlab="Cluster size")

peaks2<-peaks [peaks$group!=-1,]
peaks2<-peaks?2[peaks2$group!=-2,]
write.table(peaks2,’dataframe2.dat’,6,row.names=FALSE, append=FALSE)

HHHAHBHHAHHAHBHHAH RS HBHHAHBEHBH B AR B HAH R R RS HAH R R B R AR B H B R AR RS H

##FUNCTION TO PLOT CLUSTERS ACROSS SAMPLES

plotclusters<-function(xbegin=500,xend=505,window=1,pchp="x’,type=1){

if (type==1){

plot (peaks2[peaks2$sample==1 & peaks2$window==window &

peaks2$mz>xbegin & peaks2$mz<xend, 1],
peaks2[peaks2$sample==1 & peaks2$window==window &

peaks2$mz>xbegin & peaks2$mz<xend,2],

xlab="m/z",ylab="Intensity",col=colors() [30],pch=pchp,

xlim=c(xbegin-(xend-xbegin)*.1,xend))

Yelseq

points(peaks2[peaks2$sample==1 & peaks2$window==window &

peaks2$mz>xbegin & peaks2$mz<xend, 1],
peaks2[peaks2$sample==1 & peaks2$window==window &

peaks2$mz>xbegin & peaks2$mz<xend,2],

col=colors() [30],pch=pchp)

}

for(i in 2:20){

points(peaks2[peaks2$sample==i & peaks2$window==window &

peaks2$mz>xbegin & peaks2$mz<xend, 1],

peaks2[peaks2$sample==i & peaks2$window==window &

peaks2$mz>xbegin & peaks2$mz<xend,?2],

col=colors() [30*i] ,pch=pchp)

}

legend("topleft",legend=paste("smpl",1:20),

col=colors() [(1:20)*30] ,pch=pchp)

}

plotclusters(xbegin=500,xend=505,window=>5)
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HEFHHHHHEE R ###TOYING WITH PLOTS
numnclusters<-function(window,start){
peaks2[peaks2$window==window & peaks2$sample==1 &
peaks2$mz>start & peaks2$mz<start+5,]

}

examinegraphs<-function(window,start){

plotmz (xmin=start,xmax=start+5,time=window)
plotpeaks(xbegin=start,xend=start+5,window=window, type=2)
plotclusters(xbegin=start,xend=start+5,window=window, type=2)

}
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Appendix E

Code in R to estimate variability of intensity as a function of intensity

Uses a linear model to estimate how variability in intensity changes in
relation to peak height.

####A###H##CALCULATING THE VARIANCE OF THE INTENSITY
data<-read.table(’dataframe2.dat’ ,header=TRUE) #AKA peaks2
data<-datal[order(data$group),]

rownames (data)<-1:nrow(data)

intensdata<-matrix(0,0,2)

colnames (intensdata)<-c(’iaverage’,’istddev’)

for(i in 1:(nrow(data)/20)){
thisdata<-data$intensity[(i*20-19):(i*20)]

if (length(thisdata) !=20){

"ERROR!!'"

}
intensdata<-rbind(intensdata,cbind(mean(thisdata),sd(thisdata)))

}

fit<-lm(istddev~iaverage,data=as.data.frame(intensdata))
summary (fit)

bO<-fit$coefficients[1]

bi<-fit$coefficients[2]

xx<-seq(0,max(intensdatal,1]),length=500)
yy<-bO+blx*xx
plot(intensdata,pch=".’,xlab=’Average Intensity’,
ylab=’Standard Deviation of Intensity’)
lines(xx,yy,lty=2)
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Appendix F

SAS Code to calculate variance components across samples

Estimates the variance components from each peaks, and stores those es-
timates in a data set.

option formDlim=""" ps=1000 1s=110;

s

data proteomics;

infile ’c:\Documents and Settings\administrator\Desktop\
Proteomics\Data\dataframe2.dat’ firstobs=2;

input mz intensity sample window obs group;

run;

*proc print data=proteomics;
*run;

data proteomics2;
set proteomics;

if sample=1 then do;
day=1;

vial=’A’;

run=1;

blank="Y’;

end;

if sample=2 then do;
day=1;

vial=’D’;

run=1;

blank="N’;

end;

if sample=3 then do;
day=1;

vial="C’;

run=1;

blank="N’;

end;

if sample=4 then do;
day=1;

vial="B’;

99

www.manharaa.com




run=1;
blank="Y’;

end;

if sample=5 then
day=1;

vial="E’;

run=1;
blank="N’;

end;

if sample=6 then
day=1;

vial="E’;

run=2;
blank="N’;

end;

if sample=7 then
day=1;

vial="C’;

run=2;
blank="Y’;

end;

if sample=8 then
day=1;

vial=’A’;

run=2;
blank="N’;

end;

if sample=9 then
day=1;

vial=’B’;

run=2;
blank="N’;

end;

if sample=10 then
day=1;

vial=’D’;

run=2;
blank="Y’;

end;

if sample=11 then
day=2;

vial=’A’;

run=1;
blank="Y’;

end;

if sample=12 then
day=2;

vial=’D’;

run=1;
blank="N’;

end;

if sample=13 then

do;

do;

do;

do;

do;

do;

do;

do;

do;
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day=2;

vial="C’;

run=1;

blank="N’;

end;

if sample=14 then do;
day=2;

vial=’B’;

run=1;

blank="Y’;

end;

if sample=15 then do;
day=2;

vial="E’;

run=1;

blank="N’;

end;

if sample=16 then do;
day=2;

vial="E’;

run=2;

blank="N’;

end;

if sample=17 then do;
day=2;

vial=’C’;

run=2;

blank="Y’;

end;

if sample=18 then do;
day=2;

vial="A’;

run=2;

blank="N’;

end;

if sample=19 then do;
day=2;

vial="B’;

run=2;

blank="N’;

end;

if sample=20 then do;
day=2;

vial=’D’;

run=2;

blank="Y’;

end;

keep intensity group day vial run blank;
run;

*proc print data=proteomics2;
*xrun;
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proc sort data=proteomics2;

by group;
run;

*0DS TO ESTIMATE VARIANCE COMPONENTS FOR ALL THE PEAKS;
*ods trace on;

*ods output CovParms=vcs;

ods output SolutionF=solutions;

*proc varcomp data=proteomics2 method=reml;
*class blank day vial run;

*model intensity=blank day vial(day) run(day);
*by group;

*run;

proc mixed data=proteomics2 method=reml;
class blank day vial run;

model intensity=blank/solution;

random day vial(day) run(day);

by group;

run;

*ods trace off;
ods output close;

proc print data=solutions;
run;

proc print data=vcs;
run;

*COMBINING INTO A MATRIX (INSTEAD OF A VECTOR);
data vcs2;

set vcs;

if (CovParm = "day") then do;
cluster=group;

varvial=.;

varerror=.;

varrun=. ;

varday=Estimate;

end;

if (CovParm = "vial(day)") then do;
cluster=group;

varvial=Estimate;

varerror=.;

varrun=. ;

varday=.;

end;

if (CovParm = "run(day)") then do;
cluster=group;

varvial=.;
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varerror=.;

varrun=Estimate;

varday=.;

end;

if (CovParm = "Residual") then do;
cluster=group;

varvial=.;

varerror=Estimate;

varrun=. ;

varday=.;

end;

keep cluster varvial varerror varrun varday;
run;

data vcsrun;

set vcs2;

where varrun is not missing;
clusterrun = cluster;

keep clusterrun cluster varrun;
run;

data vcserror;

set vcs2;

where varerror is not missing;
clustererror = cluster;

keep clustererror cluster varerror;
run;

data vcsvial;

set vcs2;

where varvial is not missing;
clustervial = cluster;

keep clustervial cluster varvial;
run;

data vcsday;

set vcs2;

where varday is not missing;
clusterday = cluster;

keep clusterday cluster varday;
run;

proc sql;

create table components as

select

clustererror, varrun, varerror, clustererror as cluster2
from

vesrun INNER JOIN vcserror ON (clusterrun=clustererror);
run;

proc sql;
create table components2 as
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select

cluster2, varrun, varerror, varday, cluster as cluster2
from

components INNER JOIN vcsday ON (cluster2=clusterday) ;

proc sql;

create table components3 as

select

cluster2, varrun, varerror, varday, varvial, cluster as cluster2
from

components2 INNER JOIN vcsvial ON (cluster2=clustervial);

proc print data=components3;
run;

proc export data=components3

outfile = ’c:\Documents and Settings\administrator\Desktop\
Proteomics\Data\components.dat’

dbms=tab

replace;
run;
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Appendix G

Code in R to plot the figures given in the text

The figures given in the text were not necessary to analyze the data, but
were useful in clarifying or explaining aspects of the project. This is the code used
to create those plots.

###H R #HPLOTS FOR THE PROJECTH########### I H#H#H#HHHHH

HHHHHHFRHHHRBHRBH R H R BHRBHERH SR HF B RGBSR F R B BF SR H SR B RHE R RS RS
#MAKE FOUR PEAKS (TO SHOW 3-D NATURE OF MASS SPEC)
fourpeaks<-function(x,y){

answer<-(.5*%dnorm(x,2,1)+.5%dnorm(x,8,1) ) *
(.5*dnorm(y,3,1)+.5*%dnorm(y,12,1))

answer

}

xx<-seq(0,12,length=50)

yy<-seq(0,15,length=50)

griddler<-outer (xx,yy,fourpeaks)
persp(griddler,xlab="m/z",ylab="Time",zlab="Intensity",theta=20,phi=45)

fi S R R R B R R R e S S R R e e e S R e R S S R S e
#THE RAW DATA ACROSS THE ENTIRE m/z AXIS
plot(test5,type="1",ylim=c(0,60),ylab="Intensity",xlab="m/z")

B s T
#THE LOGGED DATA ACROSS THE ENTIRE m/z AXIS
plot(loglist(test5) ,type="1",ylim=c(0,5),ylab="Intensity",xlab="m/z")

B R e R R R R R S R R SR R 2
#0ONE WINDOW SHOWING THE NUMBER OF PEAKS IN A 50 m/z RANGE
plot(test5,type="1",ylab="Intensity",xlab="m/z",x1lim=c(500,550) ,ylim=c(0,15))
HHHHHF R HH R HESHRH HH HH E HH R RH
#0ONE WINDOW SHOWING THE NUMBER OF PEAKS IN A 10 m/z RANGE
plot(test5,type="1",ylab="Intensity",xlab="m/z",x1lim=c(500,510),ylim=c(0,15))

HERHHHHHE R R R R
#ONE WINDOW SHOWING A NOISY REGION WITH VERY LITTLE SOUND
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plot(test5,type="1",ylab="Intensity",
xlab="m/z",x1im=c(1700,1725) ,ylim=c(0, .4))

HHSHEHSHFHFRHRHEHEH GRS HFRH R HEHEHFRGRRRHEHEH SRR G H R R SR H
#RAW PLOTS

plotlist(wtest5,605.5,607.2,5)

plotlist(wtest5,1458,1465,5)

B R R R R R R S R R S R 2
#CUT-0FF PLOTS

plotlist (wtestb5c,605.5,607.2,5)

plotlist(wtestbc,1458,1465,5)

plotlist(wtestbnc,605.5,607.2,5)

HHSHEHGHFHFHHRHEHEHGRGRFRH R HEHEHFRFRRRHEHEH GRS R G F RS R R
#L0OG TRANSFORM PLOTS

plotlist(wtest5cl,605.5,607.2,5)

plotlist(wtestbcl,1458,1465,5)

HHSHEHSHFRFRHRHEHEHGRGRFRH R HEHEHFRGRRRH GRS H SRR R
#NORMALIZED PLOTS

plotlist(wtestb5cln,605.5,607.2,5)

plotlist(wtestbcln,1458,1465,5)

plotlist(wtestbn,605.5,607.2,5)

HHH#HHE SRR R R R R R R S
##SHOWING HOW VARIANCE OF INTENSITY DEPENDS ON INTENSITY
plotlist(wtestb5lnc,545.2,546,5)

HHBHHHBH R HH RS R H B S S S HH RS H RS R R ST’
##SHOWING HOW VARIANCE OF m/z IS AT THE 700 RANGE
plotlist(wtestb5lnc,705.2,705.8,5)

HEHHHHBHHH B HHAFH R B HRR SRR H BB H R R R R R R
##The graph to show difficult parts of the algorithm
trypeaks<-function(jit=.1){

size<-200

xx<-seq(0,6,length=size)
peaks<-dnorm(xx,1.2,.3)+4.5xdnorm(xx,3,.8)+dnorm(xx,4.8,.4)*1
jitter<-NULL

yy<-NULL

jitter[1]1<-0

for(i in 2:size){

jitter[il<-runif(1,-jit,jit)

yy[il<-max (0,peaks[i]+jitter[i])

}

yy[1]1<-0

yy[size]<-0

yy<-peaks+jitter
plot(xx,yy,type="1",xlab="m/z",ylab="Intensity")
abline(v=c(1.2,3,4.8))

}
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store<-as.integer(runif(1,0,1000))
set.seed(store)

#set.seed(93)

set.seed(349)

trypeaks(.3)

HERFHHBHHH B H BB R B HRA SRR RS H RS H RSB RR BB R
###PLOTTTING A BASELINE PROBLEM

library(evd)

width<-.45

num=10

xxbegin<-600

xxend<-610

gumbela<-604.3

gumbelb<-1.5

scale<-5

shift<-.5

pinheight<-.5

jitteramount<-.4

xx<-seq(xxbegin,xxend,by=.01)
yy<-rep(0,length(xx))

for(i in 1:length(xx)){
jit<-rchisq(l,jitteramount)
raise<-dgumbel (xx[i] ,gumbela,gumbelb)*scale
normals<-rbind((pinheight*dnorm(xx[i],
seq(xxbegin-1,xxend,length=num) ,width)))
peakchange<-(cbind (dgumbel (seq(xxbegin-1,xxend,length=num),
gumbela, gumbelb)*scale/2)+shift)
yy[il<-normalsy*%peakchange+raise+jit

}

xx<-(xx-600) *10+600
plot(xx,yy,type="1",xlab="m/z",ylab="Intensity")

Hit
###A HISTROGRAM OF THE INTENSITES (TO SHOW LOG TRANSFORMATION)
hist(test5lnc$intens,breaks=100,freq=FALSE,xlab="Peak Intensity",
ylab="Relative Frequency",main="",x1lim=c(0,.002))

s s s s g g g
###A HISTOGRAM OF THE INTENSITIES (AFTER LOG TRANSFORMATION)
hist(log(l+vardata$y2) ,breaks=30,freq=TRUE,

main="Histogram of 43 chosen peaks in log of 1 + intensity",

xlab="Log of Peak Intensity",ylab="Relative Frequency")

HAFHAHBHHAHBHHBHHAHBHHBHHAHBEHBHH AR BEHAH R R RS R AR H B HAH R H B R AH BB H
##SHOWING A MASS SPEC BLIP

set.seed(18)

n<-500

xx<-seq(601,602,length=n)

jitter<-rep(0,length(xx))

for(i in 2:n){

jitter[i]l<-rnorm(1,jitter[i-1],.04)
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}
yy<-dnorm(xx,601.3,.1)+dnorm(xx,601.8,.1)*.5+jitter
yy[n/2]1<-yy[n/2]+3

w<-5

for(i in 1:w){

yy[n/2-i1<-yy[n/2-11+3/w* (w-1)

yy[n/2+i]1<-yy [n/2+1i]+3/w* (w-1)

}

plot(xx,yy,type="1",xlab="m/z",ylab="Intensity")

i R R R S S R R e e S S R e R S R R R e R S R S e
###PLOTTING VARIANCE OF m/z BY m/z

#GET THE UNIFORM VARIANCE ESTIMATES

xx<-seq(500,2500,length=100)

b001d<--5.094748

bl101d<-0.002061783

uniferrors<-sqrt((2*3*exp(bOold+blold*xx))"2/12)

##REGRESSION ON THE NEW FIXED WINDOWS STANDARD ERRORS

b0<--5.25582

b1<-0.001793642

yy2<-exp (b0+b1*xx)
plot(sderrors[,1],sderrors[,2],xlab="m/z",ylab="Standard Error",
ylim=c (0, .6))

#,main="Standard Error of m/z as a function of m/z")
#sub=paste("Log(Std Err) =",b0,"+",bl,"* m/z"),cex.sub=.7,font.sub=3)
#lines(xx,uniferrors,lty=2)

lines(xx,yy2,1lty=1)

#legend ("topleft",legend=c(’Uniform Standard Error’,

#’Expected Standard Error calculated by log regression’),lty=c(2,1))

B s s s s s S s s s s s s s s s s
##Histogram of m/z values used for the log-linear regression
hist(sderrors[,1],breaks=10,xlab="m/z’ ,main="")

HEHHHA R R R R R
###Variance of Intensity by Intensity

10<-.0000282

11<-.2988815

mats<-makepeakmatrix(peak5,wtest51ln)
meanintens<-apply(mats$intens,1,mean)
sdintens<-apply(mats$intens,1,sd)
meanintens2<-meanintens[-1]

sdintens2<-sdintens[-1]

plot(meanintens2,sdintens?2,

main="Standard Error of Intensity by Average Intensity",
xlab="Intensity Level (Average)",

ylab="Standard Error of the Intensity")

#sub=paste("Regression line: SE = ",i0," + ",il," I"),font.sub=3,cex.sub=.7)

xxi<-seq(0,max(meanintens2),length=1000)
yyi<-i10+ilx*xxi
lines(xxi,yyi)

108

www.manaraa.com



SRR R R R R R R
##CREATE A PLOT WITH PEAKS AND VALLEY NOISE TO SHOW ALGORITHM
set.seed(42)

n<-500

xx<-seq(699,703,length=n)

jitter<-rep(0,length(xx))

m<-.1/6

b<-.2

yy<-dnorm(xx,700.2, .1)+dnorm(xx,701.7,.2)*3

for(i in 2:n){

jitter[il<-rnorm(1, (jitter[i-1]*(1-1/20*yy[i])) ,b-m*yy[i])

}

yy<-yy+jitter

yy<-abs (yy)

plot(xx,yy,type="1",xlab="m/z",ylab="Intensity")

HHHF R R R R
##Plotting the vial variance by machine variance
data<-read.table(’varvialerror.dat’,header=TRUE)

scale<-6

scaledata<-data

scaledata$varvial<-data$varvial*10~scale
scaledata$varerror<-data$varerror*10-scale

par (mfrow=c(1,1))

plot(scaledata$varerror,scaledata$varvial,

xlab="Variance of Run (machine)",ylab="Variance of Vial (preproccesing)"
,x1im=c(0,30) ,ylim=c(0,30))

abline(c(0,1),1ty=2)

HHHAHBHHAHHAH B HAH R HBHHAH B HBHHAH B HBHHAH RS H B HAH B R B R AR B H RS
##PLOT PEAK GROUPS
plotpeaks (xbegin=1200,xend=1205,window=5)

HHHHHF R HH SRR R R R R R
##Plotting effect of blank run
data<-read.table(’blankdata.dat’,header=TRUE)

hist(data$Probt [data$Effect=="blank"] ,breaks=100,

xlab="p-value for effect of blank",main="")

plot(data$Estimate [data$Effect=="blank"],

data$Estimate [data$Effect=="Intercept"],

xlab="Coefficient for blank run",

ylab="Coefficient for Intercept",pch=’.’)

HAFHEHBHHAEHBEHAFHEHBHHAHBEHBHHAEF B SR BHHEHBEHAFHEH RS R AR RS HRF R H RS R
##Histograms of variance components
data<-read.table(’components.dat’,header=TRUE)

temp<-datal,2]

datal,2]<-datal,4]

datal,4]<-datal,5]

datal,5]<-datal,3]

datal,3]<-temp

names (data)<-c(’Cluster’,’Variance of Day’,
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’Variance of Trial’,’Variance of Vial’,’Error’)
pairs(datal,-1],pch=20,x1im=c(0,4%10"-5),
ylim=c(0,4%10"-5) ,lower.panel=NULL,diag.panel=rug)

xlimtop<-4%10~-5

ylimtop<-xlimtop

xx<-seq(0,xlimtop,length=500)

pchp<-20

plot(data$varrun,data$varday,xlim=c(0,xlimtop) ,ylim=c(0,ylimtop),
pch=pchp,ylab="Variance of day",xlab="Variance of trial")
lines(xx,xx,lty=2)

plot(data$varvial,data$varday,xlim=c(0,xlimtop) ,ylim=c(0,ylimtop),
pch=pchp,ylab="Variance of day",xlab="Variance of vial")
lines(xx,xx,lty=2)

plot(data$varerror,data$varday,xlim=c(0,x1limtop) ,ylim=c(0,ylimtop),
pch=pchp,ylab="Variance of day",xlab="Error")

lines(xx,xx,lty=2)

plot(data$varvial,data$varrun,xlim=c(0,xlimtop) ,ylim=c(0,ylimtop),
pch=pchp,xlab="Variance of vial",ylab="Variance of trial")
lines(xx,xx,lty=2)

plot(data$varerror,data$varrun,xlim=c(0,xlimtop) ,ylim=c(0,ylimtop),
pch=pchp,xlab="Error",ylab="Variance of trial")

lines(xx,xx,1lty=2)
plot(data$varerror,data$varvial,xlim=c(0,x1limtop) ,ylim=c(0,ylimtop),
pch=pchp,xlab="Error",ylab="Variance of vial")

lines(xx,xx,lty=2)

HAHHSHAHHAEHBEHAFHEHBHHAH R R RS HAH RS HBHHEH B SRR RS

#0THER STUFF

plot(c(-100,100),c(-100,100) ,type="1",x1im=c(0,30) ,ylim=c(0,30),
xlab="Variance of Run (machine)",

ylab="Variance of Vial (preprocessing)",

main="Variance of Vial by Variance of Run")
#plotlist(test,1942.5,1944.5,5)
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